<div align="center">
<p>
<a align="left" href="https://ultralytics.com/yolov5" target="_blank">
<img width="850" src="https://github.com/ultralytics/yolov5/releases/download/v1.0/splash.jpg"></a>
</p>
<br>
<div>
<a href="https://github.com/ultralytics/yolov5/actions"><img src="https://github.com/ultralytics/yolov5/workflows/CI%20CPU%20testing/badge.svg" alt="CI CPU testing"></a>
<a href="https://zenodo.org/badge/latestdoi/264818686"><img src="https://zenodo.org/badge/264818686.svg" alt="YOLOv5 Citation"></a>
<a href="https://hub.docker.com/r/ultralytics/yolov5"><img src="https://img.shields.io/docker/pulls/ultralytics/yolov5?logo=docker" alt="Docker Pulls"></a>
<br>
<a href="https://colab.research.google.com/github/ultralytics/yolov5/blob/master/tutorial.ipynb"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"></a>
<a href="https://www.kaggle.com/ultralytics/yolov5"><img src="https://kaggle.com/static/images/open-in-kaggle.svg" alt="Open In Kaggle"></a>
<a href="https://join.slack.com/t/ultralytics/shared_invite/zt-w29ei8bp-jczz7QYUmDtgo6r6KcMIAg"><img src="https://img.shields.io/badge/Slack-Join_Forum-blue.svg?logo=slack" alt="Join Forum"></a>
</div>
<br>
<div align="center">
<a href="https://github.com/ultralytics">
<img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-social-github.png" width="2%"/>
</a>
<img width="2%" />
<a href="https://www.linkedin.com/company/ultralytics">
<img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-social-linkedin.png" width="2%"/>
</a>
<img width="2%" />
<a href="https://twitter.com/ultralytics">
<img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-social-twitter.png" width="2%"/>
</a>
<img width="2%" />
<a href="https://youtube.com/ultralytics">
<img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-social-youtube.png" width="2%"/>
</a>
<img width="2%" />
<a href="https://www.facebook.com/ultralytics">
<img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-social-facebook.png" width="2%"/>
</a>
<img width="2%" />
<a href="https://www.instagram.com/ultralytics/">
<img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-social-instagram.png" width="2%"/>
</a>
</div>
<br>
<p>
YOLOv5 ð is a family of object detection architectures and models pretrained on the COCO dataset, and represents <a href="https://ultralytics.com">Ultralytics</a>
open-source research into future vision AI methods, incorporating lessons learned and best practices evolved over thousands of hours of research and development.
</p>
<!--
<a align="center" href="https://ultralytics.com/yolov5" target="_blank">
<img width="800" src="https://github.com/ultralytics/yolov5/releases/download/v1.0/banner-api.png"></a>
-->
</div>
## <div align="center">Documentation</div>
See the [YOLOv5 Docs](https://docs.ultralytics.com) for full documentation on training, testing and deployment.
## <div align="center">Quick Start Examples</div>
<details open>
<summary>Install</summary>
Clone repo and install [requirements.txt](https://github.com/ultralytics/yolov5/blob/master/requirements.txt) in a
[**Python>=3.6.0**](https://www.python.org/) environment, including
[**PyTorch>=1.7**](https://pytorch.org/get-started/locally/).
```bash
git clone https://github.com/ultralytics/yolov5 # clone
cd yolov5
pip install -r requirements.txt # install
```
</details>
<details open>
<summary>Inference</summary>
Inference with YOLOv5 and [PyTorch Hub](https://github.com/ultralytics/yolov5/issues/36)
. [Models](https://github.com/ultralytics/yolov5/tree/master/models) download automatically from the latest
YOLOv5 [release](https://github.com/ultralytics/yolov5/releases).
```python
import torch
# Model
model = torch.hub.load('ultralytics/yolov5', 'yolov5s') # or yolov5m, yolov5l, yolov5x, custom
# Images
img = 'https://ultralytics.com/images/zidane.jpg' # or file, Path, PIL, OpenCV, numpy, list
# Inference
results = model(img)
# Results
results.print() # or .show(), .save(), .crop(), .pandas(), etc.
```
</details>
<details>
<summary>Inference with detect.py</summary>
`detect.py` runs inference on a variety of sources, downloading [models](https://github.com/ultralytics/yolov5/tree/master/models) automatically from
the latest YOLOv5 [release](https://github.com/ultralytics/yolov5/releases) and saving results to `runs/detect`.
```bash
python detect.py --source 0 # webcam
img.jpg # image
vid.mp4 # video
path/ # directory
path/*.jpg # glob
'https://youtu.be/Zgi9g1ksQHc' # YouTube
'rtsp://example.com/media.mp4' # RTSP, RTMP, HTTP stream
```
</details>
<details>
<summary>Training</summary>
The commands below reproduce YOLOv5 [COCO](https://github.com/ultralytics/yolov5/blob/master/data/scripts/get_coco.sh)
results. [Models](https://github.com/ultralytics/yolov5/tree/master/models)
and [datasets](https://github.com/ultralytics/yolov5/tree/master/data) download automatically from the latest
YOLOv5 [release](https://github.com/ultralytics/yolov5/releases). Training times for YOLOv5n/s/m/l/x are
1/2/4/6/8 days on a V100 GPU ([Multi-GPU](https://github.com/ultralytics/yolov5/issues/475) times faster). Use the
largest `--batch-size` possible, or pass `--batch-size -1` for
YOLOv5 [AutoBatch](https://github.com/ultralytics/yolov5/pull/5092). Batch sizes shown for V100-16GB.
```bash
python train.py --data coco.yaml --cfg yolov5n.yaml --weights '' --batch-size 128
yolov5s 64
yolov5m 40
yolov5l 24
yolov5x 16
```
<img width="800" src="https://user-images.githubusercontent.com/26833433/90222759-949d8800-ddc1-11ea-9fa1-1c97eed2b963.png">
</details>
<details open>
<summary>Tutorials</summary>
* [Train Custom Data](https://github.com/ultralytics/yolov5/wiki/Train-Custom-Data) ð RECOMMENDED
* [Tips for Best Training Results](https://github.com/ultralytics/yolov5/wiki/Tips-for-Best-Training-Results) âï¸
RECOMMENDED
* [Weights & Biases Logging](https://github.com/ultralytics/yolov5/issues/1289) ð NEW
* [Roboflow for Datasets, Labeling, and Active Learning](https://github.com/ultralytics/yolov5/issues/4975) ð NEW
* [Multi-GPU Training](https://github.com/ultralytics/yolov5/issues/475)
* [PyTorch Hub](https://github.com/ultralytics/yolov5/issues/36) â NEW
* [TFLite, ONNX, CoreML, TensorRT Export](https://github.com/ultralytics/yolov5/issues/251) ð
* [Test-Time Augmentation (TTA)](https://github.com/ultralytics/yolov5/issues/303)
* [Model Ensembling](https://github.com/ultralytics/yolov5/issues/318)
* [Model Pruning/Sparsity](https://github.com/ultralytics/yolov5/issues/304)
* [Hyperparameter Evolution](https://github.com/ultralytics/yolov5/issues/607)
* [Transfer Learning with Frozen Layers](https://github.com/ultralytics/yolov5/issues/1314) â NEW
* [TensorRT Deployment](https://github.com/wang-xinyu/tensorrtx)
</details>
## <div align="center">Environments</div>
Get started in seconds with our verified environments. Click each icon below for details.
<div align="center">
<a href="https://colab.research.google.com/github/ultralytics/yolov5/blob/master/tutorial.ipynb">
<img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-colab-small.png" width="15%"/>
</a>
<a href="https://www.kaggle.com/ultralytics/yolov5">
<img src="https://github.com/ultralytics/yolov5/releases/download/
没有合适的资源?快使用搜索试试~ 我知道了~
温馨提示
【作品名称】:基于 YOLOv5的ROS实时对象检测 【适用人群】:适用于希望学习不同技术领域的小白或进阶学习者。可作为毕设项目、课程设计、大作业、工程实训或初期项目立项。 【项目介绍】:Install Pytorch: 1. First create an anaconda virtual environment for pytorch conda create -n mypytorch python=3.8 2. activate the mypytorch environment conda activate mypytorch 3. Install pytorch1.8 in the created pytorch environment Install PyTorch: https://pytorch.org/get-started/locally/ conda install pytorch torchvision cudatoolkit=10.2 -c pytorch 4. Edit ~/.bashrc file, set to use python3.
资源推荐
资源详情
资源评论
收起资源包目录
基于 YOLOv5的ROS实时对象检测 (120个子文件)
setup.cfg 923B
Dockerfile 2KB
Dockerfile 821B
.dockerignore 4KB
.DS_Store 6KB
.DS_Store 6KB
.DS_Store 6KB
.gitattributes 75B
.gitignore 4KB
tutorial.ipynb 55KB
bus.jpg 476KB
zidane.jpg 165KB
yolo_v5.launch 682B
LICENSE 34KB
README.md 15KB
README.md 11KB
CONTRIBUTING.md 5KB
README.md 2KB
README.md 2KB
BoundingBox.msg 87B
BoundingBoxes.msg 63B
image.png 1.14MB
yolov5s.pt 14.11MB
datasets.py 44KB
general.py 35KB
train.py 33KB
common.py 31KB
wandb_utils.py 26KB
export.py 25KB
tf.py 20KB
plots.py 20KB
val.py 18KB
yolo.py 15KB
metrics.py 14KB
torch_utils.py 13KB
detect.py 13KB
augmentations.py 11KB
loss.py 9KB
__init__.py 7KB
autoanchor.py 7KB
hubconf.py 6KB
downloads.py 6KB
experimental.py 4KB
yolo_v5.py 4KB
activations.py 4KB
callbacks.py 2KB
autobatch.py 2KB
resume.py 1KB
sweep.py 1KB
__init__.py 1KB
restapi.py 1KB
log_dataset.py 1KB
example_request.py 299B
__init__.py 0B
__init__.py 0B
__init__.py 0B
userdata.sh 1KB
get_coco.sh 900B
mime.sh 780B
get_coco128.sh 615B
download_weights.sh 523B
download_weights.sh 277B
CMakeLists.txt 7KB
requirements.txt 979B
CMakeLists.txt 387B
additional_requirements.txt 105B
package.xml 582B
package.xml 469B
Objects365.yaml 8KB
xView.yaml 5KB
VOC.yaml 3KB
anchors.yaml 3KB
VisDrone.yaml 3KB
Argoverse.yaml 3KB
sweep.yaml 2KB
SKU-110K.yaml 2KB
coco.yaml 2KB
yolov5-p7.yaml 2KB
GlobalWheat2020.yaml 2KB
yolov5x6.yaml 2KB
yolov5s6.yaml 2KB
yolov5n6.yaml 2KB
yolov5m6.yaml 2KB
yolov5l6.yaml 2KB
yolov5-p6.yaml 2KB
coco128.yaml 2KB
hyp.scratch-low.yaml 2KB
yolov5-p2.yaml 2KB
hyp.scratch-med.yaml 2KB
hyp.scratch-high.yaml 2KB
hyp.scratch.yaml 2KB
yolov3-spp.yaml 2KB
yolov3.yaml 2KB
.pre-commit-config.yaml 2KB
yolov5s-ghost.yaml 1KB
yolov5s-transformer.yaml 1KB
yolov5-bifpn.yaml 1KB
yolov5-panet.yaml 1KB
yolov5m.yaml 1KB
yolov5s.yaml 1KB
共 120 条
- 1
- 2
资源评论
MarcoPage
- 粉丝: 4410
- 资源: 8836
下载权益
C知道特权
VIP文章
课程特权
开通VIP
上传资源 快速赚钱
- 我的内容管理 展开
- 我的资源 快来上传第一个资源
- 我的收益 登录查看自己的收益
- 我的积分 登录查看自己的积分
- 我的C币 登录后查看C币余额
- 我的收藏
- 我的下载
- 下载帮助
最新资源
- 基于Html和Shell的“老罗投资/知行合一日拱一卒投资人生”主题设计源码
- 基于Java的OnlineMusic在线音乐播放器设计源码
- comsol多场耦合 水合物降压降压开采THMC,注气驱替甲烷THM,地质封存等多场耦合收敛技术,相关地质能源开采类多场耦合仿真案列分析,包括岩土类地质灾害防护,煤层气、页岩气开采,咸水封存co2,H
- 模糊逻辑控制(FLC)Matlab simulink仿真搭建模型: 提供以下帮助 波形纪录 参考文献 仿真文件 原理解释 电机参数说明 仿真原理结构和整体框图
- 基于ThinkPHP5+Vue3的RBAC权限控制前后端分离管理系统设计源码
- 基于.Net6架构的轻量级前后端分离微服务开发框架设计源码
- 主机厂基于Simulink MBD新能源电动汽车主驱电驱控制器算法模型及开发资料,量产模型,量产软件,量产代码,软件架构设计,输入输出定子,单元测试,MIL测试资料 Sumlink MCU电机控制策
- 基于微信小程序的JavaScript/TypeScript答题小程序设计源码
- 基于QT框架的语音图像识别与数据库操作综合练手小demo设计源码
- FDTD超材料吸收器吸收光谱
- 基于Vue框架的求职招聘系统移动端(Uniapp)设计源码
- 电压型同步发电机(VSG)离网仿真模型,包含电压电流双闭环,有功无功外环控制,阻抗 仅模型 MATLAB的2018以上版本都可以
- 基于MATLAB和Python的多种数据分析方法与图表生成设计源码
- 台式三轴自动螺丝机(sw16可编辑+工程图+bom)全套技术资料100%好用.zip
- 基于Vue框架的酒店管理小程序设计源码
- 基于TypeScript的鸿蒙移动应用程序个人日记本设计源码
资源上传下载、课程学习等过程中有任何疑问或建议,欢迎提出宝贵意见哦~我们会及时处理!
点击此处反馈
安全验证
文档复制为VIP权益,开通VIP直接复制
信息提交成功