21 January 2020 11:07:21 AM
TRIANGLE_SYMQ_RULE_TEST
C version
Test the TRIANGLE_SYMQ_RULE library.
TEST01
Map points from one triangle to another.
R = reference triangle
S = simplex
T = user-defined triangle.
REF_TO_TRIANGLE: R => T
SIMPLEX_TO_TRIANGLE: S => T
TRIANGLE_TO_REF: T => R
TRIANGLE_TO_SIMPLEX: T => S
SP1: 0.781582 0.0436824
TP1: 3.30106 3.25737
RP1: 0.606846 -0.50169
TP2: 3.30106 3.25737
SP2: 0.781582 0.0436824
SP1: 0.170491 0.438305
TP1: 1.07317 1.99688
RP1: -0.220714 0.181815
TP2: 1.07317 1.99688
SP2: 0.170491 0.438305
SP1: 0.415307 0.0661187
TP1: 2.1798 1.85958
RP1: -0.103267 -0.462829
TP2: 2.1798 1.85958
SP2: 0.415307 0.0661187
SP1: 0.257578 0.109957
TP1: 1.66278 1.36018
RP1: -0.374888 -0.3869
TP2: 1.66278 1.36018
SP2: 0.257578 0.109957
SP1: 0.043829 0.633966
TP1: 0.497521 2.07721
RP1: -0.278376 0.520711
TP2: 0.497521 2.07721
SP2: 0.043829 0.633966
Region is user-defined triangle.
Triangle:
1 0
4 4
0 3
TEST02
Symmetric quadrature rule for a triangle.
Polynomial exactness degree DEGREE = 8
NUMNODES = 16
J W X Y
0 0.670913 1.34114 1.19399
1 0.670913 2.80601 3.14715
2 0.670913 0.852847 2.65886
3 0.618096 2.29646 2.08141
4 0.618096 1.91859 3.21505
5 0.618096 0.784952 1.70354
6 0.938051 1.66667 2.33333
7 0.21098 1.10109 0.353831
8 0.21098 3.64617 3.74726
9 0.21098 0.252736 2.89891
10 0.176997 1.78094 1.07764
11 0.176997 2.92236 3.70331
12 0.176997 0.296692 2.21906
13 0.176997 3.17708 2.93915
14 0.176997 1.06085 3.23793
15 0.176997 0.762072 0.822918
Sum 6.5
Area 6.5
TEST03
TRIASYMQ_GNUPLOT creates gnuplot graphics files.
Polynomial exactness degree DEGREE = 8
Number of nodes = 16
Created vertex file 'user08_vertices.txt'
Created node file 'user08_nodes.txt'
Created command file 'user08_commands.txt'
TEST04
Get a quadrature rule for a triangle.
Then write it to a file.
Polynomial exactness degree DEGREE = 8
Quadrature rule written to file 'user08.txt'
TEST05
Compute a quadrature rule for a triangle.
Check it by integrating orthonormal polynomials.
Polynomial exactness degree DEGREE = 8
RMS integration error = 2.75098e-16
Region is standard equilateral triangle.
Triangle:
-1 -0.57735
1 -0.57735
0 1.1547
TEST02
Symmetric quadrature rule for a triangle.
Polynomial exactness degree DEGREE = 8
NUMNODES = 16
J W X Y
0 0.178778 -0.488292 -0.281916
1 0.178778 0.488292 -0.281916
2 0.178778 4.44089e-16 0.563831
3 0.164704 0 -0.436336
4 0.164704 0.377878 0.218168
5 0.164704 -0.377878 0.218168
6 0.249962 0 2.22045e-16
7 0.0562198 -0.848358 -0.4898
8 0.0562198 0.848358 -0.4898
9 0.0562198 6.66134e-16 0.9796
10 0.0471643 -0.46538 -0.56281
11 0.0471643 0.720098 -0.121625
12 0.0471643 -0.254718 0.684436
13 0.0471643 0.46538 -0.56281
14 0.0471643 0.254718 0.684436
15 0.0471643 -0.720098 -0.121625
Sum 1.73205
Area 1.73205
TEST03
TRIASYMQ_GNUPLOT creates gnuplot graphics files.
Polynomial exactness degree DEGREE = 8
Number of nodes = 16
Created vertex file 'equi08_vertices.txt'
Created node file 'equi08_nodes.txt'
Created command file 'equi08_commands.txt'
TEST04
Get a quadrature rule for a triangle.
Then write it to a file.
Polynomial exactness degree DEGREE = 8
Quadrature rule written to file 'equi08.txt'
TEST05
Compute a quadrature rule for a triangle.
Check it by integrating orthonormal polynomials.
Polynomial exactness degree DEGREE = 8
RMS integration error = 1.39354e-16
Region is the simplex (0,0),(1,0),(0,1).
Triangle:
0 0
1 0
0 1
TEST02
Symmetric quadrature rule for a triangle.
Polynomial exactness degree DEGREE = 8
NUMNODES = 16
J W X Y
0 0.0516087 0.170569 0.170569
1 0.0516087 0.658861 0.170569
2 0.0516087 0.170569 0.658861
3 0.0475458 0.459293 0.0814148
4 0.0475458 0.459293 0.459293
5 0.0475458 0.0814148 0.459293
6 0.0721578 0.333333 0.333333
7 0.0162292 0.0505472 0.0505472
8 0.0162292 0.898906 0.0505472
9 0.0162292 0.0505472 0.898906
10 0.0136152 0.263113 0.00839478
11 0.0136152 0.728492 0.263113
12 0.0136152 0.00839478 0.728492
13 0.0136152 0.728492 0.00839478
14 0.0136152 0.263113 0.728492
15 0.0136152 0.00839478 0.263113
Sum 0.5
Area 0.5
TEST03
TRIASYMQ_GNUPLOT creates gnuplot graphics files.
Polynomial exactness degree DEGREE = 8
Number of nodes = 16
Created vertex file 'simp08_vertices.txt'
Created node file 'simp08_nodes.txt'
Created command file 'simp08_commands.txt'
TEST04
Get a quadrature rule for a triangle.
Then write it to a file.
Polynomial exactness degree DEGREE = 8
Quadrature rule written to file 'simp08.txt'
TEST05
Compute a quadrature rule for a triangle.
Check it by integrating orthonormal polynomials.
Polynomial exactness degree DEGREE = 8
RMS integration error = 6.97147e-17
TRIANGLE_SYMQ_RULE_TEST
Normal end of execution.
21 January 2020 11:07:21 AM