21 January 2020 08:59:41 AM
SQUARE_EXACTNESS_TEST
C version
Test the SQUARE_EXACTNESS library.
TEST01
Product Gauss-Legendre rules for the 2D Legendre integral.
Density function rho(x) = 1.
Region: -1 <= x <= +1.
Region: -1 <= y <= +1.
Level: L
Exactness: 2*L+1
Order: N = (L+1)*(L+1)
Quadrature rule for the 2D Legendre integral.
Number of points in rule is 1
D I J Relative Error
0
0 0 0.0000000000000000
1
1 0 0.0000000000000000
0 1 0.0000000000000000
2
2 0 1.0000000000000000
1 1 0.0000000000000000
0 2 1.0000000000000000
Quadrature rule for the 2D Legendre integral.
Number of points in rule is 4
D I J Relative Error
0
0 0 0.0000000000000000
1
1 0 0.0000000000000000
0 1 0.0000000000000000
2
2 0 0.0000000000000000
1 1 0.0000000000000000
0 2 0.0000000000000000
3
3 0 0.0000000000000000
2 1 0.0000000000000000
1 2 0.0000000000000000
0 3 0.0000000000000000
4
4 0 0.4444444444444446
3 1 0.0000000000000000
2 2 0.0000000000000000
1 3 0.0000000000000000
0 4 0.4444444444444446
Quadrature rule for the 2D Legendre integral.
Number of points in rule is 9
D I J Relative Error
0
0 0 0.0000000000000000
1
1 0 0.0000000000000000
0 1 0.0000000000000000
2
2 0 0.0000000000000002
1 1 0.0000000000000000
0 2 0.0000000000000002
3
3 0 0.0000000000000000
2 1 0.0000000000000000
1 2 0.0000000000000000
0 3 0.0000000000000000
4
4 0 0.0000000000000001
3 1 0.0000000000000000
2 2 0.0000000000000005
1 3 0.0000000000000000
0 4 0.0000000000000001
5
5 0 0.0000000000000000
4 1 0.0000000000000000
3 2 0.0000000000000000
2 3 0.0000000000000000
1 4 0.0000000000000000
0 5 0.0000000000000000
6
6 0 0.1599999999999996
5 1 0.0000000000000000
4 2 0.0000000000000004
3 3 0.0000000000000000
2 4 0.0000000000000004
1 5 0.0000000000000000
0 6 0.1599999999999996
Quadrature rule for the 2D Legendre integral.
Number of points in rule is 16
D I J Relative Error
0
0 0 0.0000000000000002
1
1 0 0.0000000000000000
0 1 0.0000000000000000
2
2 0 0.0000000000000002
1 1 0.0000000000000000
0 2 0.0000000000000003
3
3 0 0.0000000000000000
2 1 0.0000000000000000
1 2 0.0000000000000000
0 3 0.0000000000000000
4
4 0 0.0000000000000008
3 1 0.0000000000000000
2 2 0.0000000000000005
1 3 0.0000000000000000
0 4 0.0000000000000008
5
5 0 0.0000000000000000
4 1 0.0000000000000000
3 2 0.0000000000000000
2 3 0.0000000000000000
1 4 0.0000000000000000
0 5 0.0000000000000000
6
6 0 0.0000000000000006
5 1 0.0000000000000000
4 2 0.0000000000000010
3 3 0.0000000000000000
2 4 0.0000000000000010
1 5 0.0000000000000000
0 6 0.0000000000000008
7
7 0 0.0000000000000000
6 1 0.0000000000000000
5 2 0.0000000000000000
4 3 0.0000000000000000
3 4 0.0000000000000000
2 5 0.0000000000000000
1 6 0.0000000000000000
0 7 0.0000000000000000
8
8 0 0.0522448979591847
7 1 0.0000000000000000
6 2 0.0000000000000010
5 3 0.0000000000000000
4 4 0.0000000000000012
3 5 0.0000000000000000
2 6 0.0000000000000009
1 7 0.0000000000000000
0 8 0.0522448979591847
Quadrature rule for the 2D Legendre integral.
Number of points in rule is 25
D I J Relative Error
0
0 0 0.0000000000000000
1
1 0 0.0000000000000000
0 1 0.0000000000000000
2
2 0 0.0000000000000002
1 1 0.0000000000000000
0 2 0.0000000000000003
3
3 0 0.0000000000000000
2 1 0.0000000000000001
1 2 0.0000000000000000
0 3 0.0000000000000000
4
4 0 0.0000000000000008
3 1 0.0000000000000000
2 2 0.0000000000000009
1 3 0.0000000000000000
0 4 0.0000000000000008
5
5 0 0.0000000000000000
4 1 0.0000000000000000
3 2 0.0000000000000000
2 3 0.0000000000000000
1 4 0.0000000000000000
0 5 0.0000000000000000
6
6 0 0.0000000000000008
5 1 0.0000000000000000
4 2 0.0000000000000010
3 3 0.0000000000000000
2 4 0.0000000000000010
1 5 0.0000000000000000
0 6 0.0000000000000010
7
7 0 0.0000000000000000
6 1 0.0000000000000000
5 2 0.0000000000000000
4 3 0.0000000000000000
3 4 0.0000000000000000
2 5 0.0000000000000000
1 6 0.0000000000000000
0 7 0.0000000000000000
8
8 0 0.0000000000000010
7 1 0.0000000000000000
6 2 0.0000000000000015
5 3 0.0000000000000000
4 4 0.0000000000000012
3 5 0.0000000000000000
2 6 0.0000000000000013
1 7 0.0000000000000000
0 8 0.0000000000000009
9
9 0 0.0000000000000000
8 1 0.0000000000000000
7 2 0.0000000000000000
6 3 0.0000000000000000
5 4 0.0000000000000000
4 5 0.0000000000000000
3 6 0.0000000000000000
2 7 0.0000000000000000
1 8 0.0000000000000000
0 9 0.0000000000000000
10
10 0 0.0161249685059223
9 1 0.0000000000000000
8 2 0.0000000000000013
7 3 0.0000000000000000
6 4 0.0000000000000016
5 5 0.0000000000000000
4 6 0.0000000000000017
3 7 0.0000000000000000
2 8 0.0000000000000013
1 9 0.0000000000000000
0 10 0.0161249685059223
Quadrature rule for t