clc; clear all; close all;
% Simulation times, in seconds.
start_time = 0;
end_time = 25;
dt = 0.005;
times = start_time:dt:end_time;
m = 1;
I = [7.5*10^-3 0 0
0 7.5*10^-3 0
0 0 1.3*10^-2];
L = 0.232;
kdr = 0;
g = 9.81;
k1 = 4.905;
k2 = 0.08164;
ksmc = [20 20 1 4 1.25 1.25];
lambda = [20 20 1 4 4.25 4.25];
j = 0;
x = zeros(12,1);
xd = zeros(12,1);
xddot = zeros(12,1);
e = zeros(4001,6);
f = zeros(4001,6);
xdp = zeros(1,6);
xddotp = zeros(1,6);
omegab = zeros(3,1);
vb = zeros(3,1);
w = pi/10;
for t = times
t
j = j + 1;
xd(5) = pi/6;
xd(7) = 3;
xd(9) = cos(w*t);
xd(11) = sin(w*t);
xddot(1) = (xd(1) - xdp(1))/dt;
xddot(3) = (xd(3) - xdp(2))/dt;
xddot(5) = (xd(5) - xdp(3))/dt;
xddot(7) = (xd(7) - xdp(4))/dt;
xddot(9) = (xd(9) - xdp(5))/dt;
xddot(11) = (xd(11) - xdp(6))/dt;
xddtot(2) = (xddot(1) - xddotp(1))/dt;
xddtot(4) = (xddot(3) - xddotp(2))/dt;
xddtot(6) = (xddot(5) - xddotp(3))/dt;
xddtot(8) = (xddot(7) - xddotp(4))/dt;
xddtot(10) = (xddot(9) - xddotp(5))/dt;
xddtot(12) = (xddot(11) - xddotp(6))/dt;
data = smc(m, I, g, x, xd, xddot, lambda, ksmc);
% Ft = [(data(1)+m*g)/(cos(x(1))*cos(x(3)));
% data(2);
% data(3);
% data(4)];
%
% M = [k1 k1 k1 k1;
% -L*k1 L*k1 -L*k1 L*k1;
% L*k1 -L*k1 -L*k1 L*k1;
% -k2 -k2 k2 k2];
%
% delta = M\Ft;
%
% T = thrust(delta, k1);
% tau = torques(delta, L, k2, k1);
Fb = [0; 0; data(1)];
tau = [data(2); data(3); data(4)];
xd(1) = data(5);
xd(3) = data(6);
T = (Fb+[0; 0; m*g])/(cos(x(1))*cos(x(3)));
omegadotb = angular_acceleration(tau, omegab, I);
omegab = omegab + omegadotb*dt;
thetadotv = omegab2thetadotv(omegab, x);
x(2) = thetadotv(1);
x(4) = thetadotv(2);
x(6) = thetadotv(3);
x(1) = x(1) + x(2)*dt;
x(3) = x(3) + x(4)*dt;
x(5) = x(5) + x(6)*dt;
ab = acceleration(T, m, g, kdr, x);
vb = vb + ab*dt;
vi = vb2xdot(vb, x);
x(10) = vi(1);
x(12) = vi(2);
x(8) = vi(3);
x(9) = x(9) + vi(1)*dt;
x(11) = x(11) + vi(2)*dt;
x(7) = x(7) + vi(3)*dt;
xdp = [xd(1) xd(3) xd(5) xd(7) xd(9) xd(11)];
xddotp = [xddot(1) xddot(3) xddot(5) xddot(7) xddot(9) xddot(11)];
T01=[cos(x(5)), -sin(x(5)), 0, x(9);
sin(x(5))*cos(x(1)), cos(x(5))*cos(x(1)), -sin(x(1)), -x(7)*sin(x(1));
sin(x(5))*sin(x(1)), cos(x(5))*cos(x(1)), cos(x(1)), x(7)*cos(x(1));
0, 0, 0, 1];
% T01=[cos(x(1)), -sin(x(1)), 0, x(9);
% sin(x(1))*cos(x(5)), cos(x(1))*cos(x(5)), -sin(x(5)), -x(7)*sin(x(5));
% sin(x(1))*sin(x(5)), cos(x(1))*cos(x(5)), cos(x(5)), x(7)*cos(x(5));
% 0, 0, 0, 1];
T12 =[-sin(x(3)), -cos(x(3)), 0, 0;
0, 0, 1, x(11);
-cos(x(3)), 0, 0, 0;
0, 0, 0, 1];
T02=T01*T12;
T23 =[1 0 0 0;
0 1 0 0;
0 1 1 L;
0 0 0 1];
T24 = [1 0 0 0;
0 0 1 L;
0 0 -1 -L;
0 0 0 1];
T25 = [1 0 0 0;
0 -1 0 0;
0 -1 -1 -L;
0 0 0 1];
T26 = [1 0 0 0;
0 0 -1 -L;
0 0 1 L;
0 0 0 1];
Ta=T02*T23;
px1(j) = Ta(1,4);
py1(j) = Ta(2,4);
pz1(j) = Ta(3,4);
Tb=T02*T24;
px2(j) = Tb(1,4);
py2(j) = Tb(2,4);
pz2(j) = Tb(3,4);
Tc=T02*T25;
px3(j) = Tc(1,4);
py3(j) = Tc(2,4);
pz3(j) = Tc(3,4);
Td=T02*T26;
px4(j) = Td(1,4);
py4(j) = Td(2,4);
pz4(j) = Td(3,4);
% px1(j) = x(9) - L*sin(x(5)) - x(11)*sin(x(5));
% py1(j) = L*cos(x(1))*cos(x(5)) - x(7)*sin(x(1)) + x(11)*cos(x(1))*cos(x(5));
% pz1(j) = x(7)*cos(x(1)) + L*cos(x(1))*cos(x(5)) + x(11)*cos(x(1))*cos(x(5));
%
% px2(j) = x(9) + L*sin(x(5)) - x(11)*sin(x(5)) - L*cos(x(5))*cos(x(3));
% py2(j) = x(11)*cos(x(1))*cos(x(5)) - L*cos(x(1))*cos(x(5)) - x(7)*sin(x(1)) - L*cos(x(1))*cos(x(3))*sin(x(5));
% pz2(j) = x(7)*cos(x(1)) - L*cos(x(1))*cos(x(5)) + x(11)*cos(x(1))*cos(x(5)) - L*cos(x(3))*sin(x(1))*sin(x(5));
%
% px3(j) = x(9) + L*sin(x(5)) - x(11)*sin(x(5));
% py3(j) = x(11)*cos(x(1))*cos(x(5)) - L*cos(x(1))*cos(x(5)) - x(7)*sin(x(1));
% pz3(j) = x(7)*cos(x(1)) - L*cos(x(1))*cos(x(5)) + x(11)*cos(x(1))*cos(x(5));
%
% px4(j) = x(9) - L*sin(x(5)) - x(11)*sin(x(5)) + L*cos(x(5))*cos(x(3));
% py4(j) = x(11)*cos(x(1))*cos(x(5)) + L*cos(x(1))*cos(x(3))*sin(x(5));
% pz4(j) = x(11)*cos(x(1))*cos(x(5)) + L*cos(x(3))*sin(x(1))*sin(x(5));
px(j) = x(9);
pxd(j)= xd(9);
py(j) = x(11);
pyd(j) = xd(11);
pz(j) = x(7);
pzd(j) = xd(7);
e(j,1) = x(1);
e(j,2) = x(3);
e(j,3) = x(5);
e(j,4) = x(7);
e(j,5) = x(9);
e(j,6) = x(11);
f(j,1) = xd(1);
f(j,2) = xd(3);
f(j,3) = xd(5);
f(j,4) = xd(7);
f(j,5) = xd(9);
f(j,6) = xd(11);
% pause(dt);
end
for j=1:length(px)
plot3([px1(j) px(j) px3(j)],[py1(j) py(j) py3(j)],[pz1(j) pz(j) pz3(j)], 'r')
hold on
plot3([px2(j) px(j) px4(j)],[py2(j) py(j) py4(j)],[pz2(j) pz(j) pz4(j)],'b')
plot3(px(1:j),py(1:j),pz(1:j))
plot3(pxd(1:j),pyd(1:j),pzd(1:j),'r')
hold off
axis([-2 2 -2 2 -1 4])
grid on
pause(dt)
end
figure(1)
plot(e(:,3))
hold on;
plot(f(:,3))
figure(2)
plot(e(:,4))
hold on;
plot(f(:,4))
figure(3)
plot(e(:,5))
hold on;
plot(f(:,5))
figure(4)
plot(e(:,6))
hold on;
plot(f(:,6))
% function T = thrust(inputs, k1)
% T = [0; 0; k1 * sum(inputs)];
% end
%
% function tau = torques(inputs, L, k2, k1)
% % Inputs are values for ?i
%
% M = [-L*k1 L*k1 -L*k1 L*k1;
% L*k1 -L*k1 -L*k1 L*k1;
% -k2 -k2 k2 k2];
%
% tau = M * inputs;
% end
function ab = acceleration(T, m, g, kdr, x)
theta = [x(1); x(3); x(5)];
gravity = [0; 0; -g];
% R = rotation(angles);
R = [cos(theta(3))*cos(theta(2)), cos(theta(2))*sin(theta(3)), -sin(theta(2));
cos(theta(3))*sin(theta(1))*sin(theta(2))-cos(theta(1))*sin(theta(3)), cos(theta(1))*cos(theta(3))+sin(theta(1))*sin(theta(3))*sin(theta(2)), cos(theta(2))*sin(theta(1));
sin(theta(1))*sin(theta(3))+cos(theta(1))*cos(theta(3))*sin(theta(2)), cos(theta(1))*sin(theta(3))*sin(theta(2))-cos(theta(3))*sin(theta(1)), cos(theta(1))*cos(theta(2))];
xdot = [x(8); x(10); x(12)];
gb = R * gravity;
% T = (Fb+[0; 0; m*g])/(cos(x(1))*cos(x(3)));
Fd = -kdr * xdot;
ab = gb + T/m + kdr;
end
function omegadotb = angular_acceleration(tau, omegab, I)
omegadotb = I\(tau - cross(omegab, I * omegab));
end
function thetadotv = omegab2thetadotv(omegab, x)
theta = [x(1); x(3); x(5)];
r = [1 sin(theta(1))*tan(theta(2)) cos(theta(1))*tan(theta(2));
0 cos(theta(1)) -sin(theta(1));
0 sin(theta(1))*sec(theta(2)) cos(theta(1))*sec(theta(2))];
thetadotv = r * omegab;
end
% function omegab = thetadotv2omegab(thetadotv, x)
% theta = [x(1); x(3); x(5)];
% r = [1 sin(theta(1))*tan(theta(2)) cos(theta(1))*tan(theta(2));
% 0 cos(theta(1)) -sin(theta(1));
% 0 sin(theta(1))*sec(theta(2)) cos(theta(1))*sec(theta(2))];
% omegab = r\thetadotv;
% end
function vi = vb2xdot(vb, x)
theta = [x(1); x(3); x(5)];
R = [cos(theta(3))*cos(theta(2)), cos(theta(2))*sin(theta(3)), -sin(theta(2));
cos(theta(3))*sin(theta(1))*sin(theta(2))-cos(theta(1))*sin(theta(3)), cos(theta(1))*cos(theta(3))+sin(theta(1))*sin(theta(3))*sin(theta(2)), cos(theta(2))*sin(theta(1));
sin(theta(1))*sin(theta(3))+cos(theta(1))*cos(theta(3))*sin(theta(2)), cos(theta(1))*sin(theta(3))*sin(theta(2))-cos(theta(3))*sin(theta(1)), cos(theta(1))*cos(theta(2))];
vi = R\vb;
end
function data = smc(m, I, g, x, xd, xddot, lambda, ksmc)
diff = x - xd;
e = [diff(1) diff(3) diff(5) diff(7) diff(9) diff(11)];
edot = [diff(2) diff(4) diff(6) diff(8) diff(10) diff(12)];
s = edot + lambda.*e;
u1 = (m/(cos(x(1))*cos(x(3))))*(xddot(8)+g-lambda(4)*(x(8)-xd(8))-ksmc(4)*sign(s(4)));
ux = (m/u1)*(xddot(10)-lambda(5)*(x(10)-xd(10))-ksmc(5)*sign(s(5)));
uy = (m/u1)*(xddot(12)-lambda(6)*(x(12)-xd(1
没有合适的资源?快使用搜索试试~ 我知道了~
【四旋翼】四旋翼无人机控制仿真【含Matlab源码 4708期】.zip
共9个文件
jpg:8个
m:1个
1.该资源内容由用户上传,如若侵权请联系客服进行举报
2.虚拟产品一经售出概不退款(资源遇到问题,请及时私信上传者)
2.虚拟产品一经售出概不退款(资源遇到问题,请及时私信上传者)
版权申诉
0 下载量 4 浏览量
2024-06-23
09:01:51
上传
评论 1
收藏 134KB ZIP 举报
温馨提示
Matlab领域上传的全部代码均可运行,亲测可用,直接替换数据即可,适合小白; 1、代码压缩包内容 主函数:main.m; 调用函数:其他m文件;无需运行 运行结果效果图; 2、代码运行版本 Matlab 2019b;若运行有误,根据提示修改;若不会,可私信博主; 3、运行操作步骤 步骤一:将所有文件放到Matlab的当前文件夹中; 步骤二:双击打开main.m文件; 步骤三:点击运行,等程序运行完得到结果; 4、仿真咨询 如需其他服务,可私信博主或扫描博主博客文章底部QQ名片; 4.1 CSDN博客或资源的完整代码提供 4.2 期刊或参考文献复现 4.3 Matlab程序定制 4.4 科研合作
资源推荐
资源详情
资源评论
收起资源包目录
【四旋翼】四旋翼无人机控制仿真【含Matlab源码 4708期】.zip (9个子文件)
【四旋翼】基于matlab四旋翼无人机控制仿真【含Matlab源码 4708期】
Y_track.jpg 58KB
运行结果1.jpg 18KB
alt_trac.jpg 50KB
main.m 10KB
X_trac.jpg 59KB
运行结果2.jpg 17KB
yaw_trac.jpg 52KB
运行结果4.jpg 20KB
运行结果3.jpg 20KB
共 9 条
- 1
资源评论
Matlab领域
- 粉丝: 3w+
- 资源: 3168
上传资源 快速赚钱
- 我的内容管理 展开
- 我的资源 快来上传第一个资源
- 我的收益 登录查看自己的收益
- 我的积分 登录查看自己的积分
- 我的C币 登录后查看C币余额
- 我的收藏
- 我的下载
- 下载帮助
最新资源
资源上传下载、课程学习等过程中有任何疑问或建议,欢迎提出宝贵意见哦~我们会及时处理!
点击此处反馈
安全验证
文档复制为VIP权益,开通VIP直接复制
信息提交成功