%% 清空环境变量
warning off % 关闭报警信息
close all % 关闭开启的图窗
clear % 清空变量
clc % 清空命令行
%% 导入数据
res = xlsread('数据集.xlsx');
%% 划分训练集和测试集
temp = randperm(357);
P_train = res(temp(1: 240), 1: 12)';
T_train = res(temp(1: 240), 13)';
M = size(P_train, 2);
P_test = res(temp(241: end), 1: 12)';
T_test = res(temp(241: end), 13)';
N = size(P_test, 2);
%% 数据归一化
[p_train, ps_input] = mapminmax(P_train, 0, 1);
p_test = mapminmax('apply', P_test, ps_input);
t_train = ind2vec(T_train);
t_test = ind2vec(T_test );
%% 建立模型
net = newff(p_train, t_train, 6);
%% 设置训练参数
net.trainParam.epochs = 1000; % 最大迭代次数
net.trainParam.goal = 1e-6; % 目标训练误差
net.trainParam.lr = 0.01; % 学习率
%% 训练网络
net = train(net, p_train, t_train);
%% 仿真测试
t_sim1 = sim(net, p_train);
t_sim2 = sim(net, p_test );
%% 数据反归一化
T_sim1 = vec2ind(t_sim1);
T_sim2 = vec2ind(t_sim2);
%% 数据排序
[T_train, index_1] = sort(T_train);
[T_test , index_2] = sort(T_test );
T_sim1 = T_sim1(index_1);
T_sim2 = T_sim2(index_2);
%% 性能评价
error1 = sum((T_sim1 == T_train)) / M * 100 ;
error2 = sum((T_sim2 == T_test )) / N * 100 ;
%% 绘图
figure
plot(1: M, T_train, 'r-*', 1: M, T_sim1, 'b-o', 'LineWidth', 1)
legend('真实值', '预测值')
xlabel('预测样本')
ylabel('预测结果')
string = {strcat('训练集预测结果对比:', ['准确率=' num2str(error1) '%'])};
title(string)
grid
figure
plot(1: N, T_test, 'r-*', 1: N, T_sim2, 'b-o', 'LineWidth', 1)
legend('真实值', '预测值')
xlabel('预测样本')
ylabel('预测结果')
string = {strcat('测试集预测结果对比:', ['准确率=' num2str(error2) '%'])};
title(string)
grid
%% 混淆矩阵
figure
cm = confusionchart(T_train, T_sim1);
cm.Title = 'Confusion Matrix for Train Data';
cm.ColumnSummary = 'column-normalized';
cm.RowSummary = 'row-normalized';
figure
cm = confusionchart(T_test, T_sim2);
cm.Title = 'Confusion Matrix for Test Data';
cm.ColumnSummary = 'column-normalized';
cm.RowSummary = 'row-normalized';
Matlab 基于BP神经网络的数据分类预测 BP分类


阿飞_Y
- 粉丝: 118
- 资源: 32
最新资源
- sm2.js,前端加密算法,主要方法sm2EncryptPwd
- 人工智能-项目实践-jira-Python Jira library. Development chat
- Python俄罗斯方块Tetris源文件下载
- 基于Java 实现的LFU算法,特别适合新手,带有测试case
- 基于Java实现的LRU算法,特别适合新手,带有测试case
- 人工智能-项目实践-数据结构-冒泡排序、选择排序、快速排序、堆排序、插入排序、希尔排序、归并排序.zip
- 基于SpringBoot+Vue实现增删改查和分页查询DEMO(源码+数据库)作业
- C++ OnnxRuntime部署yolov8模型
- 人工智能-项目实践-数据结构-冒泡排序;直接插入排序;希尔排序;快速排序;堆排序;归并排序;基数排序.zip
- 人工智能-项目实践-数据结构-二叉树的层序遍历(左-右).zip
资源上传下载、课程学习等过程中有任何疑问或建议,欢迎提出宝贵意见哦~我们会及时处理!
点击此处反馈


