<div align="center">
<p>
<a href="http://www.ultralytics.com/blog/ultralytics-yolov8-turns-one-a-year-of-breakthroughs-and-innovations" target="_blank">
<img width="100%" src="https://raw.githubusercontent.com/ultralytics/assets/main/yolov8/banner-yolov8.png"></a>
<!--
<a align="center" href="https://ultralytics.com/yolov5" target="_blank">
<img width="100%" src="https://raw.githubusercontent.com/ultralytics/assets/main/yolov5/v70/splash.png"></a>
-->
</p>
[涓枃](https://docs.ultralytics.com/zh/) | [頃滉淡鞏碷(https://docs.ultralytics.com/ko/) | [鏃ユ湰瑾瀅(https://docs.ultralytics.com/ja/) | [袪褍褋褋泻懈泄](https://docs.ultralytics.com/ru/) | [Deutsch](https://docs.ultralytics.com/de/) | [Fran莽ais](https://docs.ultralytics.com/fr/) | [Espa帽ol](https://docs.ultralytics.com/es/) | [Portugu锚s](https://docs.ultralytics.com/pt/) | [啶灌た啶ㄠ啶︵](https://docs.ultralytics.com/hi/) | [丕賱毓乇亘賷丞](https://docs.ultralytics.com/ar/)
<div>
<a href="https://github.com/ultralytics/yolov5/actions/workflows/ci-testing.yml"><img src="https://github.com/ultralytics/yolov5/actions/workflows/ci-testing.yml/badge.svg" alt="YOLOv5 CI"></a>
<a href="https://zenodo.org/badge/latestdoi/264818686"><img src="https://zenodo.org/badge/264818686.svg" alt="YOLOv5 Citation"></a>
<a href="https://hub.docker.com/r/ultralytics/yolov5"><img src="https://img.shields.io/docker/pulls/ultralytics/yolov5?logo=docker" alt="Docker Pulls"></a>
<br>
<a href="https://bit.ly/yolov5-paperspace-notebook"><img src="https://assets.paperspace.io/img/gradient-badge.svg" alt="Run on Gradient"></a>
<a href="https://colab.research.google.com/github/ultralytics/yolov5/blob/master/tutorial.ipynb"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"></a>
<a href="https://www.kaggle.com/ultralytics/yolov5"><img src="https://kaggle.com/static/images/open-in-kaggle.svg" alt="Open In Kaggle"></a>
</div>
<br>
YOLOv5 馃殌 is the world's most loved vision AI, representing <a href="https://ultralytics.com">Ultralytics</a> open-source research into future vision AI methods, incorporating lessons learned and best practices evolved over thousands of hours of research and development.
We hope that the resources here will help you get the most out of YOLOv5. Please browse the YOLOv5 <a href="https://docs.ultralytics.com/yolov5">Docs</a> for details, raise an issue on <a href="https://github.com/ultralytics/yolov5/issues/new/choose">GitHub</a> for support, and join our <a href="https://ultralytics.com/discord">Discord</a> community for questions and discussions!
To request an Enterprise License please complete the form at [Ultralytics Licensing](https://ultralytics.com/license).
<div align="center">
<a href="https://github.com/ultralytics"><img src="https://github.com/ultralytics/assets/raw/main/social/logo-social-github.png" width="2%" alt="Ultralytics GitHub"></a>
<img src="https://github.com/ultralytics/assets/raw/main/social/logo-transparent.png" width="2%">
<a href="https://www.linkedin.com/company/ultralytics/"><img src="https://github.com/ultralytics/assets/raw/main/social/logo-social-linkedin.png" width="2%" alt="Ultralytics LinkedIn"></a>
<img src="https://github.com/ultralytics/assets/raw/main/social/logo-transparent.png" width="2%">
<a href="https://twitter.com/ultralytics"><img src="https://github.com/ultralytics/assets/raw/main/social/logo-social-twitter.png" width="2%" alt="Ultralytics Twitter"></a>
<img src="https://github.com/ultralytics/assets/raw/main/social/logo-transparent.png" width="2%">
<a href="https://youtube.com/ultralytics"><img src="https://github.com/ultralytics/assets/raw/main/social/logo-social-youtube.png" width="2%" alt="Ultralytics YouTube"></a>
<img src="https://github.com/ultralytics/assets/raw/main/social/logo-transparent.png" width="2%">
<a href="https://www.tiktok.com/@ultralytics"><img src="https://github.com/ultralytics/assets/raw/main/social/logo-social-tiktok.png" width="2%" alt="Ultralytics TikTok"></a>
<img src="https://github.com/ultralytics/assets/raw/main/social/logo-transparent.png" width="2%">
<a href="https://www.instagram.com/ultralytics/"><img src="https://github.com/ultralytics/assets/raw/main/social/logo-social-instagram.png" width="2%" alt="Ultralytics Instagram"></a>
<img src="https://github.com/ultralytics/assets/raw/main/social/logo-transparent.png" width="2%">
<a href="https://ultralytics.com/discord"><img src="https://github.com/ultralytics/assets/raw/main/social/logo-social-discord.png" width="2%" alt="Ultralytics Discord"></a>
</div>
</div>
<br>
## <div align="center">YOLOv8 馃殌 NEW</div>
We are thrilled to announce the launch of Ultralytics YOLOv8 馃殌, our NEW cutting-edge, state-of-the-art (SOTA) model released at **[https://github.com/ultralytics/ultralytics](https://github.com/ultralytics/ultralytics)**. YOLOv8 is designed to be fast, accurate, and easy to use, making it an excellent choice for a wide range of object detection, image segmentation and image classification tasks.
See the [YOLOv8 Docs](https://docs.ultralytics.com) for details and get started with:
[![PyPI version](https://badge.fury.io/py/ultralytics.svg)](https://badge.fury.io/py/ultralytics) [![Downloads](https://static.pepy.tech/badge/ultralytics)](https://pepy.tech/project/ultralytics)
```bash
pip install ultralytics
```
<div align="center">
<a href="https://ultralytics.com/yolov8" target="_blank">
<img width="100%" src="https://raw.githubusercontent.com/ultralytics/assets/main/yolov8/yolo-comparison-plots.png"></a>
</div>
## <div align="center">Documentation</div>
See the [YOLOv5 Docs](https://docs.ultralytics.com/yolov5) for full documentation on training, testing and deployment. See below for quickstart examples.
<details open>
<summary>Install</summary>
Clone repo and install [requirements.txt](https://github.com/ultralytics/yolov5/blob/master/requirements.txt) in a [**Python>=3.8.0**](https://www.python.org/) environment, including [**PyTorch>=1.8**](https://pytorch.org/get-started/locally/).
```bash
git clone https://github.com/ultralytics/yolov5 # clone
cd yolov5
pip install -r requirements.txt # install
```
</details>
<details>
<summary>Inference</summary>
YOLOv5 [PyTorch Hub](https://docs.ultralytics.com/yolov5/tutorials/pytorch_hub_model_loading) inference. [Models](https://github.com/ultralytics/yolov5/tree/master/models) download automatically from the latest YOLOv5 [release](https://github.com/ultralytics/yolov5/releases).
```python
import torch
# Model
model = torch.hub.load("ultralytics/yolov5", "yolov5s") # or yolov5n - yolov5x6, custom
# Images
img = "https://ultralytics.com/images/zidane.jpg" # or file, Path, PIL, OpenCV, numpy, list
# Inference
results = model(img)
# Results
results.print() # or .show(), .save(), .crop(), .pandas(), etc.
```
</details>
<details>
<summary>Inference with detect.py</summary>
`detect.py` runs inference on a variety of sources, downloading [models](https://github.com/ultralytics/yolov5/tree/master/models) automatically from the latest YOLOv5 [release](https://github.com/ultralytics/yolov5/releases) and saving results to `runs/detect`.
```bash
python detect.py --weights yolov5s.pt --source 0 # webcam
img.jpg # image
vid.mp4 # video
screen # screenshot
path/ # directory
list.txt # list of images
list.streams # list of streams
'path/*.jpg' # glob
没有合适的资源?快使用搜索试试~ 我知道了~
温馨提示
YOLOV5 改进实战项目【更换骨干网络为resnet】对硬纸板缺陷目标检测数据集的目标检测实战项目,包含代码、数据集、训练好的权重参数,经测试,代码可以直接使用。 【yolov5】项目总大小:265MB 本项目更换了yolov5骨干网络为官方实现的resnet网络,简单训练了100个epoch,map指标为0.92,map0.5:0.95=0.635。这里仅仅训练了100个epoch,网络还没收敛,加大轮次可以获取更高的网络性能 【如何训练】和yolov5一样的训练方法,摆放好datasets数据,然后更改yaml文件中的类别信息即可训练 【数据集介绍】硬纸板缺陷图像数据,1类别:detect 训练集datasets-images-train:845张图片和845个标签txt文件组成 验证集datasets-images-val:211张图片和211个标签txt文件组成 更多yolov5改进介绍、或者如何训练,请参考: https://blog.csdn.net/qq_44886601/category_12605353.html
资源推荐
资源详情
资源评论
收起资源包目录
YOLOV5 改进实战项目【更换骨干网络为resnet】:硬纸板缺陷目标检测数据集(1类别) (2000个子文件)
events.out.tfevents.1712043220.sdxx-System-Product-Name.7623.0 1MB
train.cache 227KB
val.cache 57KB
CITATION.cff 393B
results.csv 29KB
Dockerfile 3KB
Dockerfile 821B
Dockerfile-arm64 2KB
Dockerfile-cpu 2KB
.gitattributes 75B
tutorial.ipynb 42KB
bus.jpg 476KB
train_batch0.jpg 474KB
0460.jpg 473KB
val_batch2_pred.jpg 466KB
val_batch1_pred.jpg 457KB
val_batch2_labels.jpg 449KB
train_batch2.jpg 447KB
0458.jpg 442KB
val_batch1_labels.jpg 440KB
train_batch1.jpg 440KB
0399.jpg 438KB
val_batch0_pred.jpg 432KB
0314.jpg 426KB
val_batch0_labels.jpg 421KB
0379.jpg 416KB
0330.jpg 414KB
0053.jpg 410KB
0338.jpg 409KB
0395.jpg 409KB
0432.jpg 406KB
0311.jpg 401KB
0087.jpg 401KB
0310.jpg 393KB
0337.jpg 388KB
0408.jpg 385KB
0558.jpg 380KB
0244.jpg 379KB
0309.jpg 379KB
0581.jpg 378KB
0407.jpg 377KB
0712.jpg 369KB
0640.jpg 368KB
0585.jpg 367KB
0229.jpg 365KB
0390.jpg 363KB
0571.jpg 362KB
0580.jpg 358KB
0344.jpg 356KB
0648.jpg 356KB
0313.jpg 356KB
0634.jpg 354KB
0384.jpg 354KB
0646.jpg 352KB
0140.jpg 349KB
0578.jpg 348KB
0464.jpg 346KB
0328.jpg 344KB
0315.jpg 343KB
0621.jpg 343KB
0298.jpg 343KB
0534.jpg 340KB
0035.jpg 339KB
0089.jpg 337KB
0428.jpg 334KB
0528.jpg 334KB
0452.jpg 334KB
0401.jpg 333KB
0720.jpg 332KB
0551.jpg 331KB
0479.jpg 330KB
0017.jpg 330KB
0134.jpg 328KB
0519.jpg 328KB
0220.jpg 328KB
0159.jpg 327KB
0456.jpg 324KB
0261.jpg 323KB
0483.jpg 323KB
0547.jpg 321KB
0574.jpg 321KB
0096.jpg 321KB
0270.jpg 317KB
0238.jpg 315KB
0192.jpg 314KB
0242.jpg 314KB
0499.jpg 313KB
0345.jpg 313KB
1020.jpg 313KB
0299.jpg 312KB
0331.jpg 310KB
0644.jpg 310KB
0628.jpg 310KB
0353.jpg 309KB
0301.jpg 305KB
0421.jpg 303KB
0263.jpg 297KB
0030.jpg 295KB
0187.jpg 294KB
0240.jpg 293KB
共 2000 条
- 1
- 2
- 3
- 4
- 5
- 6
- 20
资源评论
- L:zY2024-08-10这个资源值得下载,资源内容详细全面,与描述一致,受益匪浅。
Ai医学图像分割
- 粉丝: 2w+
- 资源: 2128
上传资源 快速赚钱
- 我的内容管理 展开
- 我的资源 快来上传第一个资源
- 我的收益 登录查看自己的收益
- 我的积分 登录查看自己的积分
- 我的C币 登录后查看C币余额
- 我的收藏
- 我的下载
- 下载帮助
最新资源
资源上传下载、课程学习等过程中有任何疑问或建议,欢迎提出宝贵意见哦~我们会及时处理!
点击此处反馈
安全验证
文档复制为VIP权益,开通VIP直接复制
信息提交成功