Copyright (c) 2005-2023, NumPy Developers.
All rights reserved.
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are
met:
* Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.
* Redistributions in binary form must reproduce the above
copyright notice, this list of conditions and the following
disclaimer in the documentation and/or other materials provided
with the distribution.
* Neither the name of the NumPy Developers nor the names of any
contributors may be used to endorse or promote products derived
from this software without specific prior written permission.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
----
The NumPy repository and source distributions bundle several libraries that are
compatibly licensed. We list these here.
Name: lapack-lite
Files: numpy/linalg/lapack_lite/*
License: BSD-3-Clause
For details, see numpy/linalg/lapack_lite/LICENSE.txt
Name: tempita
Files: tools/npy_tempita/*
License: MIT
For details, see tools/npy_tempita/license.txt
Name: dragon4
Files: numpy/core/src/multiarray/dragon4.c
License: MIT
For license text, see numpy/core/src/multiarray/dragon4.c
Name: libdivide
Files: numpy/core/include/numpy/libdivide/*
License: Zlib
For license text, see numpy/core/include/numpy/libdivide/LICENSE.txt
Note that the following files are vendored in the repository and sdist but not
installed in built numpy packages:
Name: Meson
Files: vendored-meson/meson/*
License: Apache 2.0
For license text, see vendored-meson/meson/COPYING
Name: spin
Files: .spin/cmds.py
License: BSD-3
For license text, see .spin/LICENSE
----
This binary distribution of NumPy also bundles the following software:
Name: OpenBLAS
Files: numpy.libs\libopenblas*.dll
Description: bundled as a dynamically linked library
Availability: https://github.com/OpenMathLib/OpenBLAS/
License: BSD-3-Clause
Copyright (c) 2011-2014, The OpenBLAS Project
All rights reserved.
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are
met:
1. Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.
2. Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in
the documentation and/or other materials provided with the
distribution.
3. Neither the name of the OpenBLAS project nor the names of
its contributors may be used to endorse or promote products
derived from this software without specific prior written
permission.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
Name: LAPACK
Files: numpy.libs\libopenblas*.dll
Description: bundled in OpenBLAS
Availability: https://github.com/OpenMathLib/OpenBLAS/
License: BSD-3-Clause-Attribution
Copyright (c) 1992-2013 The University of Tennessee and The University
of Tennessee Research Foundation. All rights
reserved.
Copyright (c) 2000-2013 The University of California Berkeley. All
rights reserved.
Copyright (c) 2006-2013 The University of Colorado Denver. All rights
reserved.
$COPYRIGHT$
Additional copyrights may follow
$HEADER$
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are
met:
- Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.
- Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer listed
in this license in the documentation and/or other materials
provided with the distribution.
- Neither the name of the copyright holders nor the names of its
contributors may be used to endorse or promote products derived from
this software without specific prior written permission.
The copyright holders provide no reassurances that the source code
provided does not infringe any patent, copyright, or any other
intellectual property rights of third parties. The copyright holders
disclaim any liability to any recipient for claims brought against
recipient by any third party for infringement of that parties
intellectual property rights.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
Name: GCC runtime library
Files: numpy.libs\libopenblas*.dll
Description: statically linked to files compiled with gcc
Availability: https://gcc.gnu.org/git/?p=gcc.git;a=tree;f=libgfortran
License: GPL-3.0-with-GCC-exception
Copyright (C) 2002-2017 Free Software Foundation, Inc.
Libgfortran is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 3, or (at your option)
any later version.
Libgfortran is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
Under Section 7 of GPL version 3, you are granted additional
permissions described in the GCC Runtime Library Exception, version
3.1, as published by the Free Software Foundation.
没有合适的资源?快使用搜索试试~ 我知道了~
博文《python机器人Agent编程-实现一个本地大模型和爬虫结合的手机号归属地天气查询Agent》的打包环境及所有源代码
共2000个文件
py:1801个
txt:56个
c:50个
0 下载量 140 浏览量
2024-11-05
17:32:09
上传
评论
收藏 229.7MB ZIP 举报
温馨提示
博文《python机器人Agent编程——实现一个本地大模型和爬虫结合的手机号归属地天气查询Agent》的打包环境及所有源代码,使用说明: 前提是先安装ollama和qwen大模型 使用说明: 解压后,用cousor等软件通过工程目录打开anget目录,然后直接运行main.py即可
资源推荐
资源详情
资源评论
收起资源包目录
博文《python机器人Agent编程-实现一个本地大模型和爬虫结合的手机号归属地天气查询Agent》的打包环境及所有源代码 (2000个子文件)
fortranobject.c 46KB
__multiarray_api.c 12KB
wrapmodule.c 7KB
speedups.c 6KB
__ufunc_api.c 2KB
extra_avx512f_reduce.c 2KB
cpu_avx512_knm.c 1KB
cpu_popcnt.c 1KB
cpu_avx512_skx.c 1KB
cpu_avx512_icl.c 1KB
cpu_avx512_knl.c 984B
extra_vsx_asm.c 981B
cpu_avx512_cnl.c 972B
cpu_avx512_spr.c 930B
cpu_f16c.c 890B
cpu_avx512_clx.c 864B
cpu_asimd.c 845B
cpu_fma3.c 839B
cpu_vxe.c 813B
cpu_avx.c 799B
cpu_avx512cd.c 779B
cpu_avx512f.c 775B
cpu_avx2.c 769B
cpu_ssse3.c 725B
cpu_sse2.c 717B
cpu_sse42.c 712B
cpu_sse3.c 709B
cpu_sse.c 706B
cpu_sse41.c 695B
extra_avx512bw_mask.c 654B
cpu_vxe2.c 645B
cpu_neon_vfpv4.c 630B
cpu_neon.c 619B
cpu_asimdfhm.c 548B
extra_vsx4_mma.c 520B
extra_avx512dq_mask.c 520B
cpu_vsx.c 499B
cpu_vx.c 477B
cpu_asimddp.c 448B
cpu_asimdhp.c 394B
extra_vsx3_half_double.c 366B
limited_api.c 361B
cpu_vsx4.c 319B
cpu_fma4.c 314B
cpu_vsx2.c 276B
cpu_vsx3.c 263B
cpu_neon_fp16.c 262B
cpu_xop.c 246B
gfortran_vs2003_hack.c 83B
test_flags.c 17B
generate_umath_validation_data.cpp 6KB
bootstrap.min.css 119KB
bootstrap-theme.min.css 23KB
boilerplate.css 2KB
page.css 2KB
mpl.css 2KB
fbm.css 1KB
index.css 1KB
plot_directive.css 318B
libdivide.h 80KB
ndarraytypes.h 68KB
__multiarray_api.h 62KB
npy_common.h 38KB
npy_math.h 19KB
_dtype_api.h 17KB
npy_3kcompat.h 16KB
experimental_dtype_api.h 16KB
__ufunc_api.h 12KB
ufuncobject.h 12KB
ndarrayobject.h 10KB
distributions.h 10KB
noprefix.h 7KB
old_defines.h 6KB
fortranobject.h 6KB
numpyconfig.h 5KB
npy_cpu.h 5KB
npy_1_7_deprecated_api.h 4KB
arrayscalars.h 4KB
npy_endian.h 3KB
halffloat.h 2KB
npy_interrupt.h 2KB
_neighborhood_iterator_imp.h 2KB
npy_os.h 1KB
utils.h 1KB
_numpyconfig.h 825B
npy_no_deprecated_api.h 698B
bitgen.h 508B
arrayobject.h 294B
login.html 4KB
page.html 3KB
all_figures.html 2KB
single_figure.html 1KB
ipython_inline_figure.html 1KB
logout.html 823B
error.html 653B
view.html 558B
browser-open.html 507B
main.html 147B
404.html 146B
extension.js 979KB
共 2000 条
- 1
- 2
- 3
- 4
- 5
- 6
- 20
资源评论
JAMES费
- 粉丝: 1w+
- 资源: 51
上传资源 快速赚钱
- 我的内容管理 展开
- 我的资源 快来上传第一个资源
- 我的收益 登录查看自己的收益
- 我的积分 登录查看自己的积分
- 我的C币 登录后查看C币余额
- 我的收藏
- 我的下载
- 下载帮助
最新资源
- 一个简单的库存管理系统,使用PHP、JavaScript、Bootstrap和CSS开发
- Python(Tkinter+matplotlib)实现光斑处理系统源代码
- HC32F4A0-v2.2.0-LittleVgl-8.3-1111.zip, 基于HC32F4A0的LVGL8.3工程
- 220913201郭博宇数据结构3.docx
- 小米R3G路由器breed专属
- MATLAB实现QRLSTM长短期记忆神经网络分位数回归时间序列区间预测(含完整的程序和代码详解)
- AN-HC32F4A0系列的外部存储器控制器EXMC -Rev1.1
- MATLAB实现QRBiGRU双向门控循环单元分位数回归时间序列区间预测(含完整的程序和代码详解)
- Firefox.apk
- 使用 PyTorch 实现 AlexNet 进行 MNIST 图像分类
资源上传下载、课程学习等过程中有任何疑问或建议,欢迎提出宝贵意见哦~我们会及时处理!
点击此处反馈
安全验证
文档复制为VIP权益,开通VIP直接复制
信息提交成功