## CRAFT: Character-Region Awareness For Text detection
Official Pytorch implementation of CRAFT text detector | [Paper](https://arxiv.org/abs/1904.01941) | [Pretrained Model](https://drive.google.com/open?id=1Jk4eGD7crsqCCg9C9VjCLkMN3ze8kutZ) | [Supplementary](https://youtu.be/HI8MzpY8KMI)
**[Youngmin Baek](mailto:youngmin.baek@navercorp.com), Bado Lee, Dongyoon Han, Sangdoo Yun, Hwalsuk Lee.**
Clova AI Research, NAVER Corp.
### Sample Results
### Overview
PyTorch implementation for CRAFT text detector that effectively detect text area by exploring each character region and affinity between characters. The bounding box of texts are obtained by simply finding minimum bounding rectangles on binary map after thresholding character region and affinity scores.
<img width="1000" alt="teaser" src="./figures/craft_example.gif">
## Updates
**13 Jun, 2019**: Initial update
**20 Jul, 2019**: Added post-processing for polygon result
**28 Sep, 2019**: Added the trained model on IC15 and the link refiner
## Getting started
### Install dependencies
#### Requirements
- PyTorch>=0.4.1
- torchvision>=0.2.1
- opencv-python>=3.4.2
- check requiremtns.txt
```
pip install -r requirements.txt
```
### Training
The code for training is not included in this repository, and we cannot release the full training code for IP reason.
### Test instruction using pretrained model
- Download the trained models
*Model name* | *Used datasets* | *Languages* | *Purpose* | *Model Link* |
| :--- | :--- | :--- | :--- | :--- |
General | SynthText, IC13, IC17 | Eng + MLT | For general purpose | [Click](https://drive.google.com/open?id=1Jk4eGD7crsqCCg9C9VjCLkMN3ze8kutZ)
IC15 | SynthText, IC15 | Eng | For IC15 only | [Click](https://drive.google.com/open?id=1i2R7UIUqmkUtF0jv_3MXTqmQ_9wuAnLf)
LinkRefiner | CTW1500 | - | Used with the General Model | [Click](https://drive.google.com/open?id=1XSaFwBkOaFOdtk4Ane3DFyJGPRw6v5bO)
* Run with pretrained model
``` (with python 3.7)
python test.py --trained_model=[weightfile] --test_folder=[folder path to test images]
```
The result image and socre maps will be saved to `./result` by default.
### Arguments
* `--trained_model`: pretrained model
* `--text_threshold`: text confidence threshold
* `--low_text`: text low-bound score
* `--link_threshold`: link confidence threshold
* `--cuda`: use cuda for inference (default:True)
* `--canvas_size`: max image size for inference
* `--mag_ratio`: image magnification ratio
* `--poly`: enable polygon type result
* `--show_time`: show processing time
* `--test_folder`: folder path to input images
* `--refine`: use link refiner for sentense-level dataset
* `--refiner_model`: pretrained refiner model
## Links
- WebDemo : https://demo.ocr.clova.ai/
- Repo of recognition : https://github.com/clovaai/deep-text-recognition-benchmark
## Citation
```
@inproceedings{baek2019character,
title={Character Region Awareness for Text Detection},
author={Baek, Youngmin and Lee, Bado and Han, Dongyoon and Yun, Sangdoo and Lee, Hwalsuk},
booktitle={Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition},
pages={9365--9374},
year={2019}
}
```
## License
```
Copyright (c) 2019-present NAVER Corp.
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE.
```
没有合适的资源?快使用搜索试试~ 我知道了~
温馨提示
【资源说明】 1、该资源包括项目的全部源码,下载可以直接使用! 2、本项目适合作为计算机、数学、电子信息等专业的课程设计、期末大作业和毕设项目,作为参考资料学习借鉴。 3、本资源作为“参考资料”如果需要实现其他功能,需要能看懂代码,并且热爱钻研,自行调试。 文档图片表格结构识别算法-同花顺算法挑战赛2022春季赛参赛源码+项目说明.zip
资源推荐
资源详情
资源评论
收起资源包目录
文档图片表格结构识别算法-同花顺算法挑战赛2022春季赛参赛源码+项目说明.zip (45个子文件)
code_20105
__init__.py 0B
docs
metrics_3.jpg 145KB
metrics_1.png 45KB
metrics_2.png 60KB
Dockerfile 204B
requirement.txt 137B
env.sh 24B
pyproject.toml 31B
.gitignore 2KB
setup.cfg 154B
README.md 2KB
table_recognition
__init__.py 0B
train
__init__.py 0B
losses.py 1KB
utils
utils.py 2KB
__init__.py 0B
dataset.py 6KB
model
__init__.py 0B
UNet
__init__.py 0B
unet_parts.py 2KB
unet_model.py 1KB
run.sh 227B
train.py 6KB
metrics
__init__.py 0B
eval.py 6KB
metrics.py 4KB
data_structure.py 19KB
run.sh 289B
README.md 1KB
setting.conf 254B
predict
__init__.py 0B
predict.py 7KB
CRAFT
__init__.py 0B
craft.py 3KB
imgproc.py 2KB
LICENSE 1KB
craft_utils.py 9KB
predict.py 7KB
file_utils.py 3KB
basenet
__init__.py 0B
vgg16_bn.py 3KB
requirements.txt 95B
refinenet.py 3KB
README.md 4KB
run.sh 385B
共 45 条
- 1
资源评论
- 2301_791133122024-05-04资源很不错,内容和描述一致,值得借鉴,赶紧学起来!
土豆片片
- 粉丝: 1843
- 资源: 5862
上传资源 快速赚钱
- 我的内容管理 展开
- 我的资源 快来上传第一个资源
- 我的收益 登录查看自己的收益
- 我的积分 登录查看自己的积分
- 我的C币 登录后查看C币余额
- 我的收藏
- 我的下载
- 下载帮助
最新资源
- 利用JNI来实现android与SO文件的交互中文最新版本
- 用VirtualBox安装Android-x864.0图文教程中文4.8MB最新版本
- 基于Android系统的手机地图应用软件开发中文3.78MB最新版本
- AndroidStudio环境下的jni调用(NDK)的方法中文最新版本
- Vue + UEditor + v-model 实体绑定.zip
- 最新版本ArcGISForAndroidEclipse环境配置中文最新版本
- VS Code 的 Vue 工具 .zip
- AndroidStudio快捷键中文最新版本
- TypeScript 和 Vue 的入门模板,带有详细的 README,描述了如何将两者结合使用 .zip
- The Net Ninja YouTube 频道上的 Vue.js 2 播放列表的课程文件.zip
资源上传下载、课程学习等过程中有任何疑问或建议,欢迎提出宝贵意见哦~我们会及时处理!
点击此处反馈
安全验证
文档复制为VIP权益,开通VIP直接复制
信息提交成功