%% 该代码为基于FCM-GRNN的聚类算法
%
% <html>
% <table border="0" width="600px" id="table1"> <tr> <td><b><font size="2">该案例作者申明:</font></b></td> </tr> <tr><td><span class="comment"><font size="2">1:本人长期驻扎在此<a target="_blank" href="http://www.ilovematlab.cn/forum-158-1.html"><font color="#0000FF">板块</font></a>里,对该案例提问,做到有问必答。本套书籍官方网站为:<a href="http://video.ourmatlab.com">video.ourmatlab.com</a></font></span></td></tr><tr> <td><font size="2">2:点此<a href="http://union.dangdang.com/transfer/transfer.aspx?from=P-284318&backurl=http://www.dangdang.com/">从当当预定本书</a>:<a href="http://union.dangdang.com/transfer/transfer.aspx?from=P-284318&backurl=http://www.dangdang.com/">《Matlab神经网络30个案例分析》</a>。</td></tr><tr> <td><p class="comment"></font><font size="2">3</font><font size="2">:此案例有配套的教学视频,视频下载方式<a href="http://video.ourmatlab.com/vbuy.html">video.ourmatlab.com/vbuy.html</a></font><font size="2">。 </font></p></td> </tr> <tr> <td><span class="comment"><font size="2"> 4:此案例为原创案例,转载请注明出处(《Matlab神经网络30个案例分析》)。</font></span></td> </tr> <tr> <td><span class="comment"><font size="2"> 5:若此案例碰巧与您的研究有关联,我们欢迎您提意见,要求等,我们考虑后可以加在案例里。</font></span></td> </tr> </table>
% </html>
%% 清空环境文件
clear all;
clc;
%% 提取攻击数据
%攻击样本数据
load netattack;
P1=netattack;
T1=P1(:,39)';
P1(:,39)=[];
%数据大小
[R1,C1]=size(P1);
csum=20; %提取训练数据多少
%% 模糊聚类
data=P1;
[center,U,obj_fcn] = fcm(data,5);
for i=1:R1
[value,idx]=max(U(:,i));
a1(i)=idx;
end
%% 模糊聚类结果分析
Confusion_Matrix_FCM=zeros(6,6);
Confusion_Matrix_FCM(1,:)=[0:5];
Confusion_Matrix_FCM(:,1)=[0:5]';
for nf=1:5
for nc=1:5
Confusion_Matrix_FCM(nf+1,nc+1)=length(find(a1(find(T1==nf))==nc));
end
end
%% 网络训练样本提取
cent1=P1(find(a1==1),:);cent1=mean(cent1);
cent2=P1(find(a1==2),:);cent2=mean(cent2);
cent3=P1(find(a1==3),:);cent3=mean(cent3);
cent4=P1(find(a1==4),:);cent4=mean(cent4);
cent5=P1(find(a1==5),:);cent5=mean(cent5);
%提取范数最小为训练样本
for n=1:R1;
ecent1(n)=norm(P1(n,:)-cent1);
ecent2(n)=norm(P1(n,:)-cent2);
ecent3(n)=norm(P1(n,:)-cent3);
ecent4(n)=norm(P1(n,:)-cent4);
ecent5(n)=norm(P1(n,:)-cent5);
end
for n=1:csum
[va me1]=min(ecent1);
[va me2]=min(ecent2);
[va me3]=min(ecent3);
[va me4]=min(ecent4);
[va me5]=min(ecent5);
ecnt1(n,:)=P1(me1(1),:);ecent1(me1(1))=[];tcl(n)=1;
ecnt2(n,:)=P1(me2(1),:);ecent2(me2(1))=[];tc2(n)=2;
ecnt3(n,:)=P1(me3(1),:);ecent3(me3(1))=[];tc3(n)=3;
ecnt4(n,:)=P1(me4(1),:);ecent4(me4(1))=[];tc4(n)=4;
ecnt5(n,:)=P1(me5(1),:);ecent5(me5(1))=[];tc5(n)=5;
end
P2=[ecnt1;ecnt2;ecnt3;ecnt4;ecnt5];T2=[tcl,tc2,tc3,tc4,tc5];
k=0;
%% 迭代计算
for nit=1:10%开始迭代
%% 广义神经网络聚类
net = newgrnn(P2',T2,50); %训练广义网络
a2=sim(net,P1') ; %预测结果
%输出标准化(根据输出来分类)
a2(find(a2<=1.5))=1;
a2(find(a2>1.5&a2<=2.5))=2;
a2(find(a2>2.5&a2<=3.5))=3;
a2(find(a2>3.5&a2<=4.5))=4;
a2(find(a2>4.5))=5;
%% 网络训练数据再次提取
cent1=P1(find(a2==1),:);cent1=mean(cent1);
cent2=P1(find(a2==2),:);cent2=mean(cent2);
cent3=P1(find(a2==3),:);cent3=mean(cent3);
cent4=P1(find(a2==4),:);cent4=mean(cent4);
cent5=P1(find(a2==5),:);cent5=mean(cent5);
for n=1:R1%计算样本到各个中心的距离
ecent1(n)=norm(P1(n,:)-cent1);
ecent2(n)=norm(P1(n,:)-cent2);
ecent3(n)=norm(P1(n,:)-cent3);
ecent4(n)=norm(P1(n,:)-cent4);
ecent5(n)=norm(P1(n,:)-cent5);
end
%选择离每类中心最近的csum个样本
for n=1:csum
[va me1]=min(ecent1);
[va me2]=min(ecent2);
[va me3]=min(ecent3);
[va me4]=min(ecent4);
[va me5]=min(ecent5);
ecnt1(n,:)=P1(me1(1),:);ecent1(me1(1))=[];tc1(n)=1;
ecnt2(n,:)=P1(me2(1),:);ecent2(me2(1))=[];tc2(n)=2;
ecnt3(n,:)=P1(me3(1),:);ecent3(me3(1))=[];tc3(n)=3;
ecnt4(n,:)=P1(me4(1),:);ecent4(me4(1))=[];tc4(n)=4;
ecnt5(n,:)=P1(me5(1),:);ecent5(me5(1))=[];tc5(n)=5;
end
p2=[ecnt1;ecnt2;ecnt3;ecnt4;ecnt5];T2=[tc1,tc2,tc3,tc4,tc5];
%统计分类结果
Confusion_Matrix_GRNN=zeros(6,6);
Confusion_Matrix_GRNN(1,:)=[0:5];
Confusion_Matrix_GRNN(:,1)=[0:5]';
for nf=1:5
for nc=1:5
Confusion_Matrix_GRNN(nf+1,nc+1)=length(find(a2(find(T1==nf))==nc));
end
end
pre2=0;
for n=2:6;
pre2=pre2+max(Confusion_Matrix_GRNN(n,:));
end
pre2=pre2/R1*100;
end
%% 结果显示
Confusion_Matrix_FCM
Confusion_Matrix_GRNN
web browser www.matlabsky.com
%%
% <html>
% <table width="656" align="left" > <tr><td align="center"><p><font size="2"><a href="http://video.ourmatlab.com/">Matlab神经网络30个案例分析</a></font></p><p align="left"><font size="2">相关论坛:</font></p><p align="left"><font size="2">《Matlab神经网络30个案例分析》官方网站:<a href="http://video.ourmatlab.com">video.ourmatlab.com</a></font></p><p align="left"><font size="2">Matlab技术论坛:<a href="http://www.matlabsky.com">www.matlabsky.com</a></font></p><p align="left"><font size="2">M</font><font size="2">atlab函数百科:<a href="http://www.mfun.la">www.mfun.la</a></font></p><p align="left"><font size="2">Matlab中文论坛:<a href="http://www.ilovematlab.com">www.ilovematlab.com</a></font></p></td> </tr></table>
% </html>
没有合适的资源?快使用搜索试试~ 我知道了~
温馨提示
使用matlab进行神经网络分析的实战案例,包含所有源码及数据集文件,可方便对神经网络分析流程进行学习,具有很高的参考借鉴意义。 使用matlab进行神经网络分析的实战案例,包含所有源码及数据集文件,可方便对神经网络分析流程进行学习,具有很高的参考借鉴意义。 使用matlab进行神经网络分析的实战案例,包含所有源码及数据集文件,可方便对神经网络分析流程进行学习,具有很高的参考借鉴意义。 使用matlab进行神经网络分析的实战案例,包含所有源码及数据集文件,可方便对神经网络分析流程进行学习,具有很高的参考借鉴意义。 使用matlab进行神经网络分析的实战案例,包含所有源码及数据集文件,可方便对神经网络分析流程进行学习,具有很高的参考借鉴意义。 使用matlab进行神经网络分析的实战案例,包含所有源码及数据集文件,可方便对神经网络分析流程进行学习,具有很高的参考借鉴意义。 使用matlab进行神经网络分析的实战案例,包含所有源码及数据集文件,可方便对神经网络分析流程进行学习,具有很高的参考借鉴意义。 使用matlab进行神经网络分析的实战案例,包含所有源码及数据集文件,可方便对神经网络分析流程进行学习,具有很高的参考借鉴意义。 使用matlab进行神经网络分析的实战案例,包含所有源码及数据集文件,可方便对神经网络分析流程进行学习,具有很高的参考借鉴意义。
资源推荐
资源详情
资源评论
收起资源包目录
matlab神经网络分析实战案例(附带源码及数据集) (35).zip (2个子文件)
matlab神经网络分析实战案例(附带源码及数据集) (35)
FCMGRNN.m 5KB
netattack.mat 27KB
共 2 条
- 1
资源评论
白话机器学习
- 粉丝: 1w+
- 资源: 7672
上传资源 快速赚钱
- 我的内容管理 展开
- 我的资源 快来上传第一个资源
- 我的收益 登录查看自己的收益
- 我的积分 登录查看自己的积分
- 我的C币 登录后查看C币余额
- 我的收藏
- 我的下载
- 下载帮助
最新资源
资源上传下载、课程学习等过程中有任何疑问或建议,欢迎提出宝贵意见哦~我们会及时处理!
点击此处反馈
安全验证
文档复制为VIP权益,开通VIP直接复制
信息提交成功