<div align="center">
<p>
<a align="left" href="https://ultralytics.com/yolov5" target="_blank">
<img width="850" src="https://github.com/ultralytics/yolov5/releases/download/v1.0/splash.jpg"></a>
</p>
<br>
<div>
<a href="https://github.com/ultralytics/yolov5/actions"><img src="https://github.com/ultralytics/yolov5/workflows/CI%20CPU%20testing/badge.svg" alt="CI CPU testing"></a>
<a href="https://zenodo.org/badge/latestdoi/264818686"><img src="https://zenodo.org/badge/264818686.svg" alt="YOLOv5 Citation"></a>
<a href="https://hub.docker.com/r/ultralytics/yolov5"><img src="https://img.shields.io/docker/pulls/ultralytics/yolov5?logo=docker" alt="Docker Pulls"></a>
<br>
<a href="https://colab.research.google.com/github/ultralytics/yolov5/blob/master/tutorial.ipynb"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"></a>
<a href="https://www.kaggle.com/ultralytics/yolov5"><img src="https://kaggle.com/static/images/open-in-kaggle.svg" alt="Open In Kaggle"></a>
<a href="https://join.slack.com/t/ultralytics/shared_invite/zt-w29ei8bp-jczz7QYUmDtgo6r6KcMIAg"><img src="https://img.shields.io/badge/Slack-Join_Forum-blue.svg?logo=slack" alt="Join Forum"></a>
</div>
<br>
<div align="center">
<a href="https://github.com/ultralytics">
<img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-social-github.png" width="2%"/>
</a>
<img width="2%" />
<a href="https://www.linkedin.com/company/ultralytics">
<img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-social-linkedin.png" width="2%"/>
</a>
<img width="2%" />
<a href="https://twitter.com/ultralytics">
<img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-social-twitter.png" width="2%"/>
</a>
<img width="2%" />
<a href="https://youtube.com/ultralytics">
<img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-social-youtube.png" width="2%"/>
</a>
<img width="2%" />
<a href="https://www.facebook.com/ultralytics">
<img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-social-facebook.png" width="2%"/>
</a>
<img width="2%" />
<a href="https://www.instagram.com/ultralytics/">
<img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-social-instagram.png" width="2%"/>
</a>
</div>
<br>
<p>
YOLOv5 ð is a family of object detection architectures and models pretrained on the COCO dataset, and represents <a href="https://ultralytics.com">Ultralytics</a>
open-source research into future vision AI methods, incorporating lessons learned and best practices evolved over thousands of hours of research and development.
</p>
<!--
<a align="center" href="https://ultralytics.com/yolov5" target="_blank">
<img width="800" src="https://github.com/ultralytics/yolov5/releases/download/v1.0/banner-api.png"></a>
-->
</div>
## <div align="center">Documentation</div>
See the [YOLOv5 Docs](https://docs.ultralytics.com) for full documentation on training, testing and deployment.
## <div align="center">Quick Start Examples</div>
<details open>
<summary>Install</summary>
[**Python>=3.6.0**](https://www.python.org/) is required with all
[requirements.txt](https://github.com/ultralytics/yolov5/blob/master/requirements.txt) installed including
[**PyTorch>=1.7**](https://pytorch.org/get-started/locally/):
<!-- $ sudo apt update && apt install -y libgl1-mesa-glx libsm6 libxext6 libxrender-dev -->
```bash
$ git clone https://github.com/ultralytics/yolov5
$ cd yolov5
$ pip install -r requirements.txt
```
</details>
<details open>
<summary>Inference</summary>
Inference with YOLOv5 and [PyTorch Hub](https://github.com/ultralytics/yolov5/issues/36). Models automatically download
from the [latest YOLOv5 release](https://github.com/ultralytics/yolov5/releases).
```python
import torch
# Model
model = torch.hub.load('ultralytics/yolov5', 'yolov5s') # or yolov5m, yolov5l, yolov5x, custom
# Images
img = 'https://ultralytics.com/images/zidane.jpg' # or file, Path, PIL, OpenCV, numpy, list
# Inference
results = model(img)
# Results
results.print() # or .show(), .save(), .crop(), .pandas(), etc.
```
</details>
<details>
<summary>Inference with detect.py</summary>
`detect.py` runs inference on a variety of sources, downloading models automatically from
the [latest YOLOv5 release](https://github.com/ultralytics/yolov5/releases) and saving results to `runs/detect`.
```bash
$ python detect.py --source 0 # webcam
img.jpg # image
vid.mp4 # video
path/ # directory
path/*.jpg # glob
'https://youtu.be/Zgi9g1ksQHc' # YouTube
'rtsp://example.com/media.mp4' # RTSP, RTMP, HTTP stream
```
</details>
<details>
<summary>Training</summary>
Run commands below to reproduce results
on [COCO](https://github.com/ultralytics/yolov5/blob/master/data/scripts/get_coco.sh) dataset (dataset auto-downloads on
first use). Training times for YOLOv5s/m/l/x are 2/4/6/8 days on a single V100 (multi-GPU times faster). Use the
largest `--batch-size` your GPU allows (batch sizes shown for 16 GB devices).
```bash
$ python train.py --data coco.yaml --cfg yolov5s.yaml --weights '' --batch-size 64
yolov5m 40
yolov5l 24
yolov5x 16
```
<img width="800" src="https://user-images.githubusercontent.com/26833433/90222759-949d8800-ddc1-11ea-9fa1-1c97eed2b963.png">
</details>
<details open>
<summary>Tutorials</summary>
* [Train Custom Data](https://github.com/ultralytics/yolov5/wiki/Train-Custom-Data) ð RECOMMENDED
* [Tips for Best Training Results](https://github.com/ultralytics/yolov5/wiki/Tips-for-Best-Training-Results) âï¸
RECOMMENDED
* [Weights & Biases Logging](https://github.com/ultralytics/yolov5/issues/1289) ð NEW
* [Roboflow for Datasets, Labeling, and Active Learning](https://github.com/ultralytics/yolov5/issues/4975) ð NEW
* [Multi-GPU Training](https://github.com/ultralytics/yolov5/issues/475)
* [PyTorch Hub](https://github.com/ultralytics/yolov5/issues/36) â NEW
* [TorchScript, ONNX, CoreML Export](https://github.com/ultralytics/yolov5/issues/251) ð
* [Test-Time Augmentation (TTA)](https://github.com/ultralytics/yolov5/issues/303)
* [Model Ensembling](https://github.com/ultralytics/yolov5/issues/318)
* [Model Pruning/Sparsity](https://github.com/ultralytics/yolov5/issues/304)
* [Hyperparameter Evolution](https://github.com/ultralytics/yolov5/issues/607)
* [Transfer Learning with Frozen Layers](https://github.com/ultralytics/yolov5/issues/1314) â NEW
* [TensorRT Deployment](https://github.com/wang-xinyu/tensorrtx)
</details>
## <div align="center">Environments</div>
Get started in seconds with our verified environments. Click each icon below for details.
<div align="center">
<a href="https://colab.research.google.com/github/ultralytics/yolov5/blob/master/tutorial.ipynb">
<img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-colab-small.png" width="15%"/>
</a>
<a href="https://www.kaggle.com/ultralytics/yolov5">
<img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-kaggle-small.png" width="15%"/>
</a>
<a href="https://hub.docker.com/r/ultralytics/yolov5">
<img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-docker-small.png" width="15%"/>
</a>
<a href="https://github.com/ultralytics/yolov5/wiki/AWS-Quickstart">
<img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-aws-small.png" width="15%"/>
</a>
<a href="https://githu
没有合适的资源?快使用搜索试试~ 我知道了~
温馨提示
YOLOv5交通标志物检测源码+训练好的模型+全部数据(高分优秀项目).zip个人97分的期末大作业,主要针对计算机相关专业的正在做课程设计和期末大作业的学生和需要项目实战练习的学习者。包含全部项目源码、该项目可以直接使用、项目都经过严格调试,下载即用确保可以运行! YOLOv5交通标志物检测源码+训练好的模型+全部数据(高分优秀项目).zip个人97分的期末大作业,主要针对计算机相关专业的正在做课程设计和期末大作业的学生和需要项目实战练习的学习者。包含全部项目源码、该项目可以直接使用、项目都经过严格调试,下载即用确保可以运行! YOLOv5交通标志物检测源码+训练好的模型+全部数据(高分优秀项目).zip个人97分的期末大作业,主要针对计算机相关专业的正在做课程设计和期末大作业的学生和需要项目实战练习的学习者。包含全部项目源码、该项目可以直接使用、项目都经过严格调试,下载即用确保可以运行! YOLOv5交通标志物检测源码+训练好的模型+全部数据(高分优秀项目).zip个人97分的期末大作业,主要针对计算机相关专业的正在做课程设计和期末大作业的学生和需要项目实战练习的学习者。包含
资源推荐
资源详情
资源评论
收起资源包目录
YOLOv5交通标志物检测源码+训练好的模型+全部数据(高分优秀项目).zip (266个子文件)
events.out.tfevents.1679055968.chenming.1183950.0 1007KB
events.out.tfevents.1679066384.chenming.1267914.0 934KB
events.out.tfevents.1679051038.chenming.1144044.0 846KB
setup.cfg 923B
results.csv 29KB
results.csv 29KB
results.csv 29KB
Dockerfile 2KB
Dockerfile 821B
.gitignore 50B
yolov5-sfid.iml 495B
tutorial.ipynb 55KB
logo.jpeg 33KB
up.jpeg 28KB
right.jpeg 27KB
right.jpeg 25KB
tmp_upload.jpeg 21KB
up.jpeg 21KB
phone_419.jpg 646KB
train_batch1.jpg 536KB
train_batch0.jpg 528KB
train_batch1.jpg 527KB
train_batch0.jpg 523KB
train_batch0.jpg 508KB
train_batch1.jpg 507KB
train_batch2.jpg 484KB
train_batch2.jpg 483KB
train_batch2.jpg 482KB
bus.jpg 476KB
phone_89.jpg 444KB
val_batch0_pred.jpg 416KB
val_batch0_pred.jpg 415KB
val_batch0_pred.jpg 414KB
val_batch0_pred.jpg 413KB
val_batch0_labels.jpg 409KB
val_batch0_labels.jpg 409KB
val_batch0_labels.jpg 409KB
val_batch0_labels.jpg 407KB
phone_1310.jpg 392KB
val_batch2_pred.jpg 384KB
val_batch2_pred.jpg 383KB
val_batch2_pred.jpg 383KB
val_batch2_pred.jpg 381KB
val_batch1_pred.jpg 378KB
val_batch1_pred.jpg 378KB
val_batch1_pred.jpg 376KB
val_batch2_labels.jpg 376KB
val_batch2_labels.jpg 376KB
val_batch2_labels.jpg 376KB
val_batch1_pred.jpg 375KB
val_batch2_labels.jpg 374KB
val_batch1_labels.jpg 369KB
val_batch1_labels.jpg 369KB
val_batch1_labels.jpg 369KB
val_batch1_labels.jpg 368KB
phone_633.jpg 344KB
phone_689.jpg 315KB
tmp_upload.jpg 311KB
phone_2096.jpg 223KB
phone_2423.jpg 197KB
labels_correlogram.jpg 188KB
labels_correlogram.jpg 188KB
labels_correlogram.jpg 188KB
phone_2402.jpg 181KB
zidane.jpg 165KB
labels.jpg 130KB
labels.jpg 130KB
labels.jpg 130KB
single_result.jpg 82KB
upload_show_result.jpg 81KB
fishman.jpg 74KB
zhu.jpg 38KB
logo.jpg 17KB
README.md 14KB
README.md 10KB
README.md 2KB
tt100k.names 189B
tmp_upload.png 1.04MB
lufei.png 216KB
results.png 207KB
results.png 206KB
results.png 202KB
qq.png 151KB
F1_curve.png 115KB
F1_curve.png 115KB
F1_curve.png 113KB
P_curve.png 110KB
P_curve.png 110KB
P_curve.png 110KB
F1_curve.png 109KB
P_curve.png 107KB
confusion_matrix.png 104KB
confusion_matrix.png 104KB
confusion_matrix.png 104KB
confusion_matrix.png 101KB
R_curve.png 96KB
R_curve.png 96KB
R_curve.png 92KB
PR_curve.png 92KB
R_curve.png 91KB
共 266 条
- 1
- 2
- 3
资源评论
程序员张小妍
- 粉丝: 1w+
- 资源: 3474
上传资源 快速赚钱
- 我的内容管理 展开
- 我的资源 快来上传第一个资源
- 我的收益 登录查看自己的收益
- 我的积分 登录查看自己的积分
- 我的C币 登录后查看C币余额
- 我的收藏
- 我的下载
- 下载帮助
最新资源
- linux常用命令大全.txt
- linux常用命令大全.txt
- linux常用命令大全.txt
- logd/logcat源码
- 排序算法中插入排序C++实现及其特性
- 土地出让数据集(2000-2022.12)(104.8W+ 记录,48特征)CSV
- MFC如何修改多文档视图的标签
- 无人机路径规划中基于DDPG算法的MATLAB实现与信噪比优化
- 配电网电压与无功协调优化 以最小化运行成本(包含开关动作成本、功率损耗成本以及设备运行成本)和电压偏差为目标函数,考虑分布式电源的接入,采用线性化和二次松弛方法,将非凸模型转化为二阶锥规划模型,通过优
- MATLAB轴承动力学代码(正常、外圈故障、内圈故障、滚动体故障),根据滚动轴承故障机理建模(含数学方程建立和公式推导)并在MATLAB中采用ODE45进行数值计算 可模拟不同轴承故障类型,输出时域
资源上传下载、课程学习等过程中有任何疑问或建议,欢迎提出宝贵意见哦~我们会及时处理!
点击此处反馈
安全验证
文档复制为VIP权益,开通VIP直接复制
信息提交成功