<div align="center">
<p>
<a align="left" href="https://ultralytics.com/yolov5" target="_blank">
<img width="850" src="https://github.com/ultralytics/yolov5/releases/download/v1.0/splash.jpg"></a>
</p>
<br>
<div>
<a href="https://github.com/ultralytics/yolov5/actions"><img src="https://github.com/ultralytics/yolov5/workflows/CI%20CPU%20testing/badge.svg" alt="CI CPU testing"></a>
<a href="https://zenodo.org/badge/latestdoi/264818686"><img src="https://zenodo.org/badge/264818686.svg" alt="YOLOv5 Citation"></a>
<a href="https://hub.docker.com/r/ultralytics/yolov5"><img src="https://img.shields.io/docker/pulls/ultralytics/yolov5?logo=docker" alt="Docker Pulls"></a>
<br>
<a href="https://colab.research.google.com/github/ultralytics/yolov5/blob/master/tutorial.ipynb"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"></a>
<a href="https://www.kaggle.com/ultralytics/yolov5"><img src="https://kaggle.com/static/images/open-in-kaggle.svg" alt="Open In Kaggle"></a>
<a href="https://join.slack.com/t/ultralytics/shared_invite/zt-w29ei8bp-jczz7QYUmDtgo6r6KcMIAg"><img src="https://img.shields.io/badge/Slack-Join_Forum-blue.svg?logo=slack" alt="Join Forum"></a>
</div>
<br>
<div align="center">
<a href="https://github.com/ultralytics">
<img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-social-github.png" width="2%"/>
</a>
<img width="2%" />
<a href="https://www.linkedin.com/company/ultralytics">
<img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-social-linkedin.png" width="2%"/>
</a>
<img width="2%" />
<a href="https://twitter.com/ultralytics">
<img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-social-twitter.png" width="2%"/>
</a>
<img width="2%" />
<a href="https://youtube.com/ultralytics">
<img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-social-youtube.png" width="2%"/>
</a>
<img width="2%" />
<a href="https://www.facebook.com/ultralytics">
<img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-social-facebook.png" width="2%"/>
</a>
<img width="2%" />
<a href="https://www.instagram.com/ultralytics/">
<img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-social-instagram.png" width="2%"/>
</a>
</div>
<br>
<p>
YOLOv5 ð is a family of object detection architectures and models pretrained on the COCO dataset, and represents <a href="https://ultralytics.com">Ultralytics</a>
open-source research into future vision AI methods, incorporating lessons learned and best practices evolved over thousands of hours of research and development.
</p>
<!--
<a align="center" href="https://ultralytics.com/yolov5" target="_blank">
<img width="800" src="https://github.com/ultralytics/yolov5/releases/download/v1.0/banner-api.png"></a>
-->
</div>
## <div align="center">Documentation</div>
See the [YOLOv5 Docs](https://docs.ultralytics.com) for full documentation on training, testing and deployment.
## <div align="center">Quick Start Examples</div>
<details open>
<summary>Install</summary>
[**Python>=3.6.0**](https://www.python.org/) is required with all
[requirements.txt](https://github.com/ultralytics/yolov5/blob/master/requirements.txt) installed including
[**PyTorch>=1.7**](https://pytorch.org/get-started/locally/):
<!-- $ sudo apt update && apt install -y libgl1-mesa-glx libsm6 libxext6 libxrender-dev -->
```bash
$ git clone https://github.com/ultralytics/yolov5
$ cd yolov5
$ pip install -r requirements.txt
```
</details>
<details open>
<summary>Inference</summary>
Inference with YOLOv5 and [PyTorch Hub](https://github.com/ultralytics/yolov5/issues/36). Models automatically download
from the [latest YOLOv5 release](https://github.com/ultralytics/yolov5/releases).
```python
import torch
# Model
model = torch.hub.load('ultralytics/yolov5', 'yolov5s') # or yolov5m, yolov5l, yolov5x, custom
# Images
img = 'https://ultralytics.com/images/zidane.jpg' # or file, Path, PIL, OpenCV, numpy, list
# Inference
results = model(img)
# Results
results.print() # or .show(), .save(), .crop(), .pandas(), etc.
```
</details>
<details>
<summary>Inference with detect.py</summary>
`detect.py` runs inference on a variety of sources, downloading models automatically from
the [latest YOLOv5 release](https://github.com/ultralytics/yolov5/releases) and saving results to `runs/detect`.
```bash
$ python detect.py --source 0 # webcam
img.jpg # image
vid.mp4 # video
path/ # directory
path/*.jpg # glob
'https://youtu.be/Zgi9g1ksQHc' # YouTube
'rtsp://example.com/media.mp4' # RTSP, RTMP, HTTP stream
```
</details>
<details>
<summary>Training</summary>
Run commands below to reproduce results
on [COCO](https://github.com/ultralytics/yolov5/blob/master/data/scripts/get_coco.sh) dataset (dataset auto-downloads on
first use). Training times for YOLOv5s/m/l/x are 2/4/6/8 days on a single V100 (multi-GPU times faster). Use the
largest `--batch-size` your GPU allows (batch sizes shown for 16 GB devices).
```bash
$ python train.py --data coco.yaml --cfg yolov5s.yaml --weights '' --batch-size 64
yolov5m 40
yolov5l 24
yolov5x 16
```
<img width="800" src="https://user-images.githubusercontent.com/26833433/90222759-949d8800-ddc1-11ea-9fa1-1c97eed2b963.png">
</details>
<details open>
<summary>Tutorials</summary>
* [Train Custom Data](https://github.com/ultralytics/yolov5/wiki/Train-Custom-Data) ð RECOMMENDED
* [Tips for Best Training Results](https://github.com/ultralytics/yolov5/wiki/Tips-for-Best-Training-Results) âï¸
RECOMMENDED
* [Weights & Biases Logging](https://github.com/ultralytics/yolov5/issues/1289) ð NEW
* [Roboflow for Datasets, Labeling, and Active Learning](https://github.com/ultralytics/yolov5/issues/4975) ð NEW
* [Multi-GPU Training](https://github.com/ultralytics/yolov5/issues/475)
* [PyTorch Hub](https://github.com/ultralytics/yolov5/issues/36) â NEW
* [TorchScript, ONNX, CoreML Export](https://github.com/ultralytics/yolov5/issues/251) ð
* [Test-Time Augmentation (TTA)](https://github.com/ultralytics/yolov5/issues/303)
* [Model Ensembling](https://github.com/ultralytics/yolov5/issues/318)
* [Model Pruning/Sparsity](https://github.com/ultralytics/yolov5/issues/304)
* [Hyperparameter Evolution](https://github.com/ultralytics/yolov5/issues/607)
* [Transfer Learning with Frozen Layers](https://github.com/ultralytics/yolov5/issues/1314) â NEW
* [TensorRT Deployment](https://github.com/wang-xinyu/tensorrtx)
</details>
## <div align="center">Environments</div>
Get started in seconds with our verified environments. Click each icon below for details.
<div align="center">
<a href="https://colab.research.google.com/github/ultralytics/yolov5/blob/master/tutorial.ipynb">
<img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-colab-small.png" width="15%"/>
</a>
<a href="https://www.kaggle.com/ultralytics/yolov5">
<img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-kaggle-small.png" width="15%"/>
</a>
<a href="https://hub.docker.com/r/ultralytics/yolov5">
<img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-docker-small.png" width="15%"/>
</a>
<a href="https://github.com/ultralytics/yolov5/wiki/AWS-Quickstart">
<img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-aws-small.png" width="15%"/>
</a>
<a href="https://githu
没有合适的资源?快使用搜索试试~ 我知道了~
温馨提示
yolov5道路交通标志检测+训练好的道路指示牌识别权重+数据集(高分项目).zipyolov5道路标志检测,包含训练好的玩手机检测权重,以及PR曲线,loss曲线等等,在道路指示牌识别数据集中训练得到的权重,有pyqt界面,目标类别名为trafficlight;speedlimit;crosswalk;stop共四个类别,并附道路指示牌识别数据集,标签格式为txt和xml两种,分别保存在两个文件夹中。 yolov5道路交通标志检测+训练好的道路指示牌识别权重+数据集(高分项目).zipyolov5道路标志检测,包含训练好的玩手机检测权重,以及PR曲线,loss曲线等等,在道路指示牌识别数据集中训练得到的权重,有pyqt界面,目标类别名为trafficlight;speedlimit;crosswalk;stop共四个类别,并附道路指示牌识别数据集,标签格式为txt和xml两种,分别保存在两个文件夹中。 yolov5道路交通标志检测+训练好的道路指示牌识别权重+数据集(高分项目).zipyolov5道路标志检测,包含训练好的玩手机检测权重,以及PR曲线,loss曲线等等,在道路指示
资源推荐
资源详情
资源评论
收起资源包目录
yolov5道路交通标志检测+训练好的道路指示牌识别权重+数据集(高分项目).zip (266个子文件)
events.out.tfevents.1679055968.chenming.1183950.0 1007KB
events.out.tfevents.1679066384.chenming.1267914.0 934KB
events.out.tfevents.1679051038.chenming.1144044.0 846KB
setup.cfg 923B
results.csv 29KB
results.csv 29KB
results.csv 29KB
Dockerfile 2KB
Dockerfile 821B
.gitignore 50B
yolov5-sfid.iml 495B
tutorial.ipynb 55KB
logo.jpeg 33KB
up.jpeg 28KB
right.jpeg 27KB
right.jpeg 25KB
tmp_upload.jpeg 21KB
up.jpeg 21KB
phone_419.jpg 646KB
train_batch1.jpg 536KB
train_batch0.jpg 528KB
train_batch1.jpg 527KB
train_batch0.jpg 523KB
train_batch0.jpg 508KB
train_batch1.jpg 507KB
train_batch2.jpg 484KB
train_batch2.jpg 483KB
train_batch2.jpg 482KB
bus.jpg 476KB
phone_89.jpg 444KB
val_batch0_pred.jpg 416KB
val_batch0_pred.jpg 415KB
val_batch0_pred.jpg 414KB
val_batch0_pred.jpg 413KB
val_batch0_labels.jpg 409KB
val_batch0_labels.jpg 409KB
val_batch0_labels.jpg 409KB
val_batch0_labels.jpg 407KB
phone_1310.jpg 392KB
val_batch2_pred.jpg 384KB
val_batch2_pred.jpg 383KB
val_batch2_pred.jpg 383KB
val_batch2_pred.jpg 381KB
val_batch1_pred.jpg 378KB
val_batch1_pred.jpg 378KB
val_batch1_pred.jpg 376KB
val_batch2_labels.jpg 376KB
val_batch2_labels.jpg 376KB
val_batch2_labels.jpg 376KB
val_batch1_pred.jpg 375KB
val_batch2_labels.jpg 374KB
val_batch1_labels.jpg 369KB
val_batch1_labels.jpg 369KB
val_batch1_labels.jpg 369KB
val_batch1_labels.jpg 368KB
phone_633.jpg 344KB
phone_689.jpg 315KB
tmp_upload.jpg 311KB
phone_2096.jpg 223KB
phone_2423.jpg 197KB
labels_correlogram.jpg 188KB
labels_correlogram.jpg 188KB
labels_correlogram.jpg 188KB
phone_2402.jpg 181KB
zidane.jpg 165KB
labels.jpg 130KB
labels.jpg 130KB
labels.jpg 130KB
single_result.jpg 82KB
upload_show_result.jpg 81KB
fishman.jpg 74KB
zhu.jpg 38KB
logo.jpg 17KB
README.md 14KB
README.md 10KB
README.md 2KB
tt100k.names 189B
tmp_upload.png 1.04MB
lufei.png 216KB
results.png 207KB
results.png 206KB
results.png 202KB
qq.png 151KB
F1_curve.png 115KB
F1_curve.png 115KB
F1_curve.png 113KB
P_curve.png 110KB
P_curve.png 110KB
P_curve.png 110KB
F1_curve.png 109KB
P_curve.png 107KB
confusion_matrix.png 104KB
confusion_matrix.png 104KB
confusion_matrix.png 104KB
confusion_matrix.png 101KB
R_curve.png 96KB
R_curve.png 96KB
R_curve.png 92KB
PR_curve.png 92KB
R_curve.png 91KB
共 266 条
- 1
- 2
- 3
资源评论
程序员张小妍
- 粉丝: 1w+
- 资源: 3252
上传资源 快速赚钱
- 我的内容管理 展开
- 我的资源 快来上传第一个资源
- 我的收益 登录查看自己的收益
- 我的积分 登录查看自己的积分
- 我的C币 登录后查看C币余额
- 我的收藏
- 我的下载
- 下载帮助
最新资源
- PHPThinkphp+Vue2.0前后端分离框架通用后台源码数据库 MySQL源码类型 WebForm
- 构建一个大模型训练、微调、评估、推理、部署的全流程开发套件,基于MindSpore内置的并行技术和组件化设计
- 基于SpringCloud+Vue的财务数据管理系统(后端代码)
- 基于SpringBoot+Vue的在线课程管理系统(前端代码)
- 基于SpringBoot+Vue的在线课程管理系统(后端代码)
- MindInsight为MindSpore提供了简单易用的调优调试能力 用于模型优化的可视化仪表板
- 野火霸道开发板485原工程
- 国产化自主可控的人工智能开源平台 平台面向人工智能研究中的数据处理、算法开发、模型训练、算力管理和推理应用等各个流程的技术难点
- 基于Springboot+Vue的江西红色旅游景点宣传网站(后端代码)
- 基于Springboot+Vue的江西红色旅游景点宣传网站(管理端代码)
资源上传下载、课程学习等过程中有任何疑问或建议,欢迎提出宝贵意见哦~我们会及时处理!
点击此处反馈
安全验证
文档复制为VIP权益,开通VIP直接复制
信息提交成功