<div align="center">
<p>
<a align="left" href="https://ultralytics.com/yolov3" target="_blank">
<img width="850" src="https://user-images.githubusercontent.com/26833433/99805965-8f2ca800-2b3d-11eb-8fad-13a96b222a23.jpg"></a>
</p>
<br>
<div>
<a href="https://github.com/ultralytics/yolov3/actions"><img src="https://github.com/ultralytics/yolov3/workflows/CI%20CPU%20testing/badge.svg" alt="CI CPU testing"></a>
<a href="https://zenodo.org/badge/latestdoi/264818686"><img src="https://zenodo.org/badge/264818686.svg" alt="YOLOv3 Citation"></a>
<a href="https://hub.docker.com/r/ultralytics/yolov3"><img src="https://img.shields.io/docker/pulls/ultralytics/yolov3?logo=docker" alt="Docker Pulls"></a>
<br>
<a href="https://colab.research.google.com/github/ultralytics/yolov3/blob/master/tutorial.ipynb"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"></a>
<a href="https://www.kaggle.com/ultralytics/yolov3"><img src="https://kaggle.com/static/images/open-in-kaggle.svg" alt="Open In Kaggle"></a>
<a href="https://join.slack.com/t/ultralytics/shared_invite/zt-w29ei8bp-jczz7QYUmDtgo6r6KcMIAg"><img src="https://img.shields.io/badge/Slack-Join_Forum-blue.svg?logo=slack" alt="Join Forum"></a>
</div>
<br>
<div align="center">
<a href="https://github.com/ultralytics">
<img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-social-github.png" width="2%"/>
</a>
<img width="2%" />
<a href="https://www.linkedin.com/company/ultralytics">
<img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-social-linkedin.png" width="2%"/>
</a>
<img width="2%" />
<a href="https://twitter.com/ultralytics">
<img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-social-twitter.png" width="2%"/>
</a>
<img width="2%" />
<a href="https://youtube.com/ultralytics">
<img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-social-youtube.png" width="2%"/>
</a>
<img width="2%" />
<a href="https://www.facebook.com/ultralytics">
<img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-social-facebook.png" width="2%"/>
</a>
<img width="2%" />
<a href="https://www.instagram.com/ultralytics/">
<img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-social-instagram.png" width="2%"/>
</a>
</div>
<br>
<p>
YOLOv3 ð is a family of object detection architectures and models pretrained on the COCO dataset, and represents <a href="https://ultralytics.com">Ultralytics</a>
open-source research into future vision AI methods, incorporating lessons learned and best practices evolved over thousands of hours of research and development.
</p>
<!--
<a align="center" href="https://ultralytics.com/yolov3" target="_blank">
<img width="800" src="https://github.com/ultralytics/yolov5/releases/download/v1.0/banner-api.png"></a>
-->
</div>
## <div align="center">Documentation</div>
See the [YOLOv3 Docs](https://docs.ultralytics.com) for full documentation on training, testing and deployment.
## <div align="center">Quick Start Examples</div>
<details open>
<summary>Install</summary>
[**Python>=3.6.0**](https://www.python.org/) is required with all
[requirements.txt](https://github.com/ultralytics/yolov3/blob/master/requirements.txt) installed including
[**PyTorch>=1.7**](https://pytorch.org/get-started/locally/):
<!-- $ sudo apt update && apt install -y libgl1-mesa-glx libsm6 libxext6 libxrender-dev -->
```bash
$ git clone https://github.com/ultralytics/yolov3
$ cd yolov3
$ pip install -r requirements.txt
```
</details>
<details open>
<summary>Inference</summary>
Inference with YOLOv3 and [PyTorch Hub](https://github.com/ultralytics/yolov5/issues/36). Models automatically download
from the [latest YOLOv3 release](https://github.com/ultralytics/yolov3/releases).
```python
import torch
# Model
model = torch.hub.load('ultralytics/yolov3', 'yolov3') # or yolov3-spp, yolov3-tiny, custom
# Images
img = 'https://ultralytics.com/images/zidane.jpg' # or file, Path, PIL, OpenCV, numpy, list
# Inference
results = model(img)
# Results
results.print() # or .show(), .save(), .crop(), .pandas(), etc.
```
</details>
<details>
<summary>Inference with detect.py</summary>
`detect.py` runs inference on a variety of sources, downloading models automatically from
the [latest YOLOv3 release](https://github.com/ultralytics/yolov3/releases) and saving results to `runs/detect`.
```bash
$ python detect.py --source 0 # webcam
img.jpg # image
vid.mp4 # video
path/ # directory
path/*.jpg # glob
'https://youtu.be/Zgi9g1ksQHc' # YouTube
'rtsp://example.com/media.mp4' # RTSP, RTMP, HTTP stream
```
</details>
<details>
<summary>Training</summary>
<img width="800" src="https://user-images.githubusercontent.com/26833433/90222759-949d8800-ddc1-11ea-9fa1-1c97eed2b963.png">
</details>
<details open>
<summary>Tutorials</summary>
* [Train Custom Data](https://github.com/ultralytics/yolov3/wiki/Train-Custom-Data) ð RECOMMENDED
* [Tips for Best Training Results](https://github.com/ultralytics/yolov3/wiki/Tips-for-Best-Training-Results) âï¸
RECOMMENDED
* [Weights & Biases Logging](https://github.com/ultralytics/yolov5/issues/1289) ð NEW
* [Roboflow for Datasets, Labeling, and Active Learning](https://github.com/ultralytics/yolov5/issues/4975) ð NEW
* [Multi-GPU Training](https://github.com/ultralytics/yolov5/issues/475)
* [PyTorch Hub](https://github.com/ultralytics/yolov5/issues/36) â NEW
* [TorchScript, ONNX, CoreML Export](https://github.com/ultralytics/yolov5/issues/251) ð
* [Test-Time Augmentation (TTA)](https://github.com/ultralytics/yolov5/issues/303)
* [Model Ensembling](https://github.com/ultralytics/yolov5/issues/318)
* [Model Pruning/Sparsity](https://github.com/ultralytics/yolov5/issues/304)
* [Hyperparameter Evolution](https://github.com/ultralytics/yolov5/issues/607)
* [Transfer Learning with Frozen Layers](https://github.com/ultralytics/yolov5/issues/1314) â NEW
* [TensorRT Deployment](https://github.com/wang-xinyu/tensorrtx)
</details>
## <div align="center">Environments</div>
Get started in seconds with our verified environments. Click each icon below for details.
<div align="center">
<a href="https://colab.research.google.com/github/ultralytics/yolov3/blob/master/tutorial.ipynb">
<img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-colab-small.png" width="15%"/>
</a>
<a href="https://www.kaggle.com/ultralytics/yolov3">
<img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-kaggle-small.png" width="15%"/>
</a>
<a href="https://hub.docker.com/r/ultralytics/yolov3">
<img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-docker-small.png" width="15%"/>
</a>
<a href="https://github.com/ultralytics/yolov3/wiki/AWS-Quickstart">
<img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-aws-small.png" width="15%"/>
</a>
<a href="https://github.com/ultralytics/yolov3/wiki/GCP-Quickstart">
<img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-gcp-small.png" width="15%"/>
</a>
</div>
## <div align="center">Integrations</div>
<div align="center">
<a href="https://wandb.ai/site?utm_campaign=repo_yolo_readme">
<img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-wb-long.png" width="49%"/>
</a>
<a href="https://roboflow.com/?ref=ultralytics">
<img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-roboflow-long.png" width="49%"/>
</a>
</div>
|Weights and Biases|Roboflow â NEW|
|:-:|:-:|
|Automa
没有合适的资源?快使用搜索试试~ 我知道了~
YOLOv3大飞机检测训练权重+代码+标注好的数据集
共3628个文件
jpg:1172个
xml:1166个
txt:1163个
1.该资源内容由用户上传,如若侵权请联系客服进行举报
2.虚拟产品一经售出概不退款(资源遇到问题,请及时私信上传者)
2.虚拟产品一经售出概不退款(资源遇到问题,请及时私信上传者)
版权申诉
0 下载量 197 浏览量
2022-12-14
20:23:42
上传
评论
收藏 430.42MB ZIP 举报
温馨提示
1、YOLOv3大飞机检测训练权重 ,附有各种训练曲线图,可使用tensorboard打开训练日志, 2、classes: aeroplane; 3、包括1000多张数据集,标签格式为VOC和YOLO两种 4、检测结果和数据集参考:https://blog.csdn.net/weixin_51154380/article/details/126394836?spm=1001.2014.3001.5502
资源推荐
资源详情
资源评论
收起资源包目录
YOLOv3大飞机检测训练权重+代码+标注好的数据集 (3628个子文件)
events.out.tfevents.1669983061.DESKTOP-AJP7QI2.15156.0 908KB
setup.cfg 923B
results.csv 35KB
Dockerfile 2KB
.dockerignore 4KB
.gitattributes 75B
.gitignore 4KB
.gitignore 50B
pytorch-yolov3-9.6.0.iml 498B
tutorial.ipynb 54KB
bus.jpg 476KB
train_batch1.jpg 373KB
train_batch0.jpg 346KB
train_batch2.jpg 339KB
val_batch1_pred.jpg 339KB
val_batch1_labels.jpg 329KB
val_batch0_pred.jpg 318KB
val_batch0_labels.jpg 310KB
val_batch2_pred.jpg 304KB
val_batch2_labels.jpg 303KB
2010_001426.jpg 250KB
2008_008086.jpg 204KB
2008_004847.jpg 184KB
2010_000622.jpg 184KB
2008_004648.jpg 173KB
2008_008050.jpg 167KB
zidane.jpg 165KB
2008_004646.jpg 164KB
2011_002504.jpg 163KB
2008_006169.jpg 162KB
2009_005232.jpg 157KB
2010_002141.jpg 152KB
2009_004969.jpg 151KB
2010_001505.jpg 151KB
2008_003155.jpg 150KB
2008_006637.jpg 149KB
2008_001468.jpg 148KB
2010_005942.jpg 148KB
2009_002680.jpg 148KB
2009_004917.jpg 146KB
2011_000790.jpg 145KB
2009_000661.jpg 145KB
2011_001699.jpg 144KB
2008_006140.jpg 144KB
2010_001085.jpg 143KB
2010_003655.jpg 143KB
2009_004820.jpg 142KB
2011_000586.jpg 142KB
2008_002358.jpg 141KB
2009_000225.jpg 141KB
2010_000939.jpg 141KB
2009_002001.jpg 141KB
2008_008130.jpg 141KB
2010_002357.jpg 141KB
2009_000513.jpg 140KB
2011_001800.jpg 139KB
2010_004455.jpg 139KB
2008_003041.jpg 138KB
2010_004601.jpg 138KB
2010_004118.jpg 137KB
2009_002099.jpg 136KB
2010_005877.jpg 134KB
2008_003478.jpg 133KB
2011_000698.jpg 133KB
2010_002310.jpg 133KB
2008_005796.jpg 132KB
2009_003396.jpg 131KB
2010_002638.jpg 131KB
2008_003744.jpg 131KB
2011_001880.jpg 130KB
2008_008607.jpg 130KB
2008_000251.jpg 130KB
2009_002211.jpg 129KB
2008_007970.jpg 129KB
2008_008096.jpg 129KB
2011_000359.jpg 129KB
2008_008344.jpg 129KB
2010_003983.jpg 129KB
2010_000250.jpg 129KB
2009_005215.jpg 128KB
2008_002977.jpg 128KB
2010_001294.jpg 128KB
2008_000367.jpg 127KB
2009_004475.jpg 127KB
2008_001985.jpg 126KB
2009_004446.jpg 126KB
2010_002496.jpg 126KB
2010_004855.jpg 125KB
2010_005106.jpg 125KB
2010_002684.jpg 125KB
2008_006778.jpg 124KB
2008_004000.jpg 124KB
2009_003760.jpg 124KB
2011_001081.jpg 123KB
2008_001971.jpg 123KB
2008_006394.jpg 123KB
2010_003361.jpg 123KB
2009_000159.jpg 122KB
2010_005683.jpg 122KB
2010_000323.jpg 121KB
共 3628 条
- 1
- 2
- 3
- 4
- 5
- 6
- 37
资源评论
XTX_AI
- 粉丝: 6019
- 资源: 1423
上传资源 快速赚钱
- 我的内容管理 展开
- 我的资源 快来上传第一个资源
- 我的收益 登录查看自己的收益
- 我的积分 登录查看自己的积分
- 我的C币 登录后查看C币余额
- 我的收藏
- 我的下载
- 下载帮助
最新资源
- 在高斯环境中计算QPSK调制的误码率曲线与信噪比的关系Matlab代码。.rar
- 在雷利衰落信道中绘制BPSK和DEPSK方案的误码率matlab代码.rar
- 在瑞利信道中16QAM误码率曲线的Matlab代码.rar
- 在衰落信道中接收M-PSK的多样性Matlab代码.rar
- 在瑞利信道环境下使用BPSK调制的OFDM系统的误码率Matlab代码.rar
- 振幅键控(ASK)是一种简单且基本的数字调制形式Matlab代码.rar
- 噪声下的M-QAM传输仿真Matlab代码.rar
- 在用户移动条件下不同差分双跳中继Matlab代码.rar
- 正交Hermite函数生成器Matlab代码.rar
- 正交频分复用simulink实现.rar
- 正交幅度调制Matlab代码.rar
- 正交相移键控(QPSK)Matlab代码.rar
- 正交频分复用通信系统Matlab代码.rar
- 支持多种不同速率的802.11n无线局域网物理层(基带)的Simulink模型.rar
- 直接序列扩频(DS SS)Matlab代码.rar
- 直接序列扩频(DSSS)16QAM-发射器和接收器Matlab代码.rar
资源上传下载、课程学习等过程中有任何疑问或建议,欢迎提出宝贵意见哦~我们会及时处理!
点击此处反馈
安全验证
文档复制为VIP权益,开通VIP直接复制
信息提交成功