<div align="center">
<p>
<a align="left" href="https://ultralytics.com/yolov3" target="_blank">
<img width="850" src="https://user-images.githubusercontent.com/26833433/99805965-8f2ca800-2b3d-11eb-8fad-13a96b222a23.jpg"></a>
</p>
<br>
<div>
<a href="https://github.com/ultralytics/yolov3/actions"><img src="https://github.com/ultralytics/yolov3/workflows/CI%20CPU%20testing/badge.svg" alt="CI CPU testing"></a>
<a href="https://zenodo.org/badge/latestdoi/264818686"><img src="https://zenodo.org/badge/264818686.svg" alt="YOLOv3 Citation"></a>
<a href="https://hub.docker.com/r/ultralytics/yolov3"><img src="https://img.shields.io/docker/pulls/ultralytics/yolov3?logo=docker" alt="Docker Pulls"></a>
<br>
<a href="https://colab.research.google.com/github/ultralytics/yolov3/blob/master/tutorial.ipynb"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"></a>
<a href="https://www.kaggle.com/ultralytics/yolov3"><img src="https://kaggle.com/static/images/open-in-kaggle.svg" alt="Open In Kaggle"></a>
<a href="https://join.slack.com/t/ultralytics/shared_invite/zt-w29ei8bp-jczz7QYUmDtgo6r6KcMIAg"><img src="https://img.shields.io/badge/Slack-Join_Forum-blue.svg?logo=slack" alt="Join Forum"></a>
</div>
<br>
<div align="center">
<a href="https://github.com/ultralytics">
<img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-social-github.png" width="2%"/>
</a>
<img width="2%" />
<a href="https://www.linkedin.com/company/ultralytics">
<img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-social-linkedin.png" width="2%"/>
</a>
<img width="2%" />
<a href="https://twitter.com/ultralytics">
<img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-social-twitter.png" width="2%"/>
</a>
<img width="2%" />
<a href="https://youtube.com/ultralytics">
<img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-social-youtube.png" width="2%"/>
</a>
<img width="2%" />
<a href="https://www.facebook.com/ultralytics">
<img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-social-facebook.png" width="2%"/>
</a>
<img width="2%" />
<a href="https://www.instagram.com/ultralytics/">
<img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-social-instagram.png" width="2%"/>
</a>
</div>
<br>
<p>
YOLOv3 ð is a family of object detection architectures and models pretrained on the COCO dataset, and represents <a href="https://ultralytics.com">Ultralytics</a>
open-source research into future vision AI methods, incorporating lessons learned and best practices evolved over thousands of hours of research and development.
</p>
<!--
<a align="center" href="https://ultralytics.com/yolov3" target="_blank">
<img width="800" src="https://github.com/ultralytics/yolov5/releases/download/v1.0/banner-api.png"></a>
-->
</div>
## <div align="center">Documentation</div>
See the [YOLOv3 Docs](https://docs.ultralytics.com) for full documentation on training, testing and deployment.
## <div align="center">Quick Start Examples</div>
<details open>
<summary>Install</summary>
[**Python>=3.6.0**](https://www.python.org/) is required with all
[requirements.txt](https://github.com/ultralytics/yolov3/blob/master/requirements.txt) installed including
[**PyTorch>=1.7**](https://pytorch.org/get-started/locally/):
<!-- $ sudo apt update && apt install -y libgl1-mesa-glx libsm6 libxext6 libxrender-dev -->
```bash
$ git clone https://github.com/ultralytics/yolov3
$ cd yolov3
$ pip install -r requirements.txt
```
</details>
<details open>
<summary>Inference</summary>
Inference with YOLOv3 and [PyTorch Hub](https://github.com/ultralytics/yolov5/issues/36). Models automatically download
from the [latest YOLOv3 release](https://github.com/ultralytics/yolov3/releases).
```python
import torch
# Model
model = torch.hub.load('ultralytics/yolov3', 'yolov3') # or yolov3-spp, yolov3-tiny, custom
# Images
img = 'https://ultralytics.com/images/zidane.jpg' # or file, Path, PIL, OpenCV, numpy, list
# Inference
results = model(img)
# Results
results.print() # or .show(), .save(), .crop(), .pandas(), etc.
```
</details>
<details>
<summary>Inference with detect.py</summary>
`detect.py` runs inference on a variety of sources, downloading models automatically from
the [latest YOLOv3 release](https://github.com/ultralytics/yolov3/releases) and saving results to `runs/detect`.
```bash
$ python detect.py --source 0 # webcam
img.jpg # image
vid.mp4 # video
path/ # directory
path/*.jpg # glob
'https://youtu.be/Zgi9g1ksQHc' # YouTube
'rtsp://example.com/media.mp4' # RTSP, RTMP, HTTP stream
```
</details>
<details>
<summary>Training</summary>
<img width="800" src="https://user-images.githubusercontent.com/26833433/90222759-949d8800-ddc1-11ea-9fa1-1c97eed2b963.png">
</details>
<details open>
<summary>Tutorials</summary>
* [Train Custom Data](https://github.com/ultralytics/yolov3/wiki/Train-Custom-Data) ð RECOMMENDED
* [Tips for Best Training Results](https://github.com/ultralytics/yolov3/wiki/Tips-for-Best-Training-Results) âï¸
RECOMMENDED
* [Weights & Biases Logging](https://github.com/ultralytics/yolov5/issues/1289) ð NEW
* [Roboflow for Datasets, Labeling, and Active Learning](https://github.com/ultralytics/yolov5/issues/4975) ð NEW
* [Multi-GPU Training](https://github.com/ultralytics/yolov5/issues/475)
* [PyTorch Hub](https://github.com/ultralytics/yolov5/issues/36) â NEW
* [TorchScript, ONNX, CoreML Export](https://github.com/ultralytics/yolov5/issues/251) ð
* [Test-Time Augmentation (TTA)](https://github.com/ultralytics/yolov5/issues/303)
* [Model Ensembling](https://github.com/ultralytics/yolov5/issues/318)
* [Model Pruning/Sparsity](https://github.com/ultralytics/yolov5/issues/304)
* [Hyperparameter Evolution](https://github.com/ultralytics/yolov5/issues/607)
* [Transfer Learning with Frozen Layers](https://github.com/ultralytics/yolov5/issues/1314) â NEW
* [TensorRT Deployment](https://github.com/wang-xinyu/tensorrtx)
</details>
## <div align="center">Environments</div>
Get started in seconds with our verified environments. Click each icon below for details.
<div align="center">
<a href="https://colab.research.google.com/github/ultralytics/yolov3/blob/master/tutorial.ipynb">
<img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-colab-small.png" width="15%"/>
</a>
<a href="https://www.kaggle.com/ultralytics/yolov3">
<img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-kaggle-small.png" width="15%"/>
</a>
<a href="https://hub.docker.com/r/ultralytics/yolov3">
<img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-docker-small.png" width="15%"/>
</a>
<a href="https://github.com/ultralytics/yolov3/wiki/AWS-Quickstart">
<img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-aws-small.png" width="15%"/>
</a>
<a href="https://github.com/ultralytics/yolov3/wiki/GCP-Quickstart">
<img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-gcp-small.png" width="15%"/>
</a>
</div>
## <div align="center">Integrations</div>
<div align="center">
<a href="https://wandb.ai/site?utm_campaign=repo_yolo_readme">
<img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-wb-long.png" width="49%"/>
</a>
<a href="https://roboflow.com/?ref=ultralytics">
<img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-roboflow-long.png" width="49%"/>
</a>
</div>
|Weights and Biases|Roboflow â NEW|
|:-:|:-:|
|Automa
没有合适的资源?快使用搜索试试~ 我知道了~
YOLOv3船只检测+训练好的权重+已标注的船只检测数据集
共2355个文件
jpg:748个
xml:742个
txt:739个
1.该资源内容由用户上传,如若侵权请联系客服进行举报
2.虚拟产品一经售出概不退款(资源遇到问题,请及时私信上传者)
2.虚拟产品一经售出概不退款(资源遇到问题,请及时私信上传者)
版权申诉
0 下载量 5 浏览量
2023-03-09
13:00:56
上传
评论 1
收藏 404.37MB RAR 举报
温馨提示
1、YOLOv3训练船舶检测模型,并包含标注好的船舶检测数据集,标签格式为xml和txt两种,类别名为boat, 2、数据集和检测结果参考:https://blog.csdn.net/zhiqingAI/article/details/124230743 3、采用pytrch框架,代码是python的
资源推荐
资源详情
资源评论
收起资源包目录
YOLOv3船只检测+训练好的权重+已标注的船只检测数据集 (2355个子文件)
events.out.tfevents.1669988218.DESKTOP-AJP7QI2.8800.0 912KB
setup.cfg 923B
results.csv 35KB
Dockerfile 2KB
.dockerignore 4KB
.gitattributes 75B
.gitignore 4KB
.gitignore 50B
pytorch-yolov3-9.6.0.iml 498B
tutorial.ipynb 54KB
bus.jpg 476KB
train_batch1.jpg 462KB
val_batch2_pred.jpg 461KB
val_batch2_labels.jpg 461KB
train_batch2.jpg 448KB
train_batch0.jpg 421KB
val_batch1_pred.jpg 394KB
val_batch1_labels.jpg 389KB
val_batch0_pred.jpg 376KB
val_batch0_labels.jpg 371KB
2011_000238.jpg 223KB
2011_001221.jpg 216KB
2008_005863.jpg 213KB
2008_001420.jpg 213KB
2009_000093.jpg 206KB
2008_001580.jpg 200KB
2009_002343.jpg 197KB
2010_001729.jpg 196KB
2008_002610.jpg 195KB
2008_007156.jpg 193KB
2009_002778.jpg 190KB
2008_000262.jpg 190KB
2008_003480.jpg 189KB
2010_004950.jpg 189KB
2008_001970.jpg 188KB
2011_000744.jpg 188KB
2008_003870.jpg 187KB
2009_004125.jpg 186KB
2011_001886.jpg 186KB
2009_000516.jpg 185KB
2009_004786.jpg 182KB
2008_006121.jpg 181KB
2011_000683.jpg 181KB
2011_001001.jpg 180KB
2009_002358.jpg 179KB
2011_001532.jpg 179KB
2010_000887.jpg 175KB
2010_003117.jpg 174KB
2011_002519.jpg 174KB
2010_000906.jpg 173KB
2008_000148.jpg 173KB
2010_004714.jpg 172KB
2010_000382.jpg 171KB
2009_002727.jpg 171KB
2009_001715.jpg 171KB
2009_001544.jpg 167KB
2010_002653.jpg 165KB
zidane.jpg 165KB
2009_001230.jpg 165KB
2008_002482.jpg 164KB
2011_001161.jpg 164KB
2008_006014.jpg 163KB
2008_007346.jpg 162KB
2008_000036.jpg 161KB
2010_003508.jpg 161KB
2008_001159.jpg 160KB
2009_000446.jpg 158KB
2010_001916.jpg 158KB
2009_003482.jpg 158KB
2008_006065.jpg 157KB
2009_000385.jpg 157KB
2008_008235.jpg 156KB
2011_000986.jpg 156KB
2010_003203.jpg 155KB
2009_002662.jpg 155KB
2008_002335.jpg 154KB
2011_002085.jpg 154KB
2011_002872.jpg 153KB
2011_000086.jpg 153KB
2010_001289.jpg 153KB
2008_002709.jpg 153KB
2010_003878.jpg 153KB
2009_004888.jpg 152KB
2009_003229.jpg 152KB
2011_000347.jpg 152KB
2010_004006.jpg 152KB
2011_000435.jpg 152KB
2009_003080.jpg 152KB
2008_007953.jpg 151KB
2010_000559.jpg 151KB
2009_003462.jpg 150KB
2008_007966.jpg 150KB
2009_001949.jpg 150KB
2008_000437.jpg 150KB
2008_000423.jpg 149KB
2008_000414.jpg 149KB
2009_000608.jpg 149KB
2011_003041.jpg 149KB
2008_002625.jpg 149KB
2009_002759.jpg 148KB
共 2355 条
- 1
- 2
- 3
- 4
- 5
- 6
- 24
资源评论
stsdddd
- 粉丝: 3w+
- 资源: 929
上传资源 快速赚钱
- 我的内容管理 展开
- 我的资源 快来上传第一个资源
- 我的收益 登录查看自己的收益
- 我的积分 登录查看自己的积分
- 我的C币 登录后查看C币余额
- 我的收藏
- 我的下载
- 下载帮助
最新资源
- C语言-leetcode题解之74-search-a-2d-matrix.c
- C语言-leetcode题解之73-set-matrix-zeroes.c
- 树莓派物联网智能家居基础教程
- YOLOv5深度学习目标检测基础教程
- (源码)基于Arduino和Nextion的HMI人机界面系统.zip
- (源码)基于 JavaFX 和 MySQL 的影院管理系统.zip
- (源码)基于EAV模型的动态广告位系统.zip
- (源码)基于Qt的长沙地铁换乘系统.zip
- (源码)基于ESP32和DM02A模块的智能照明系统.zip
- (源码)基于.NET Core和Entity Framework Core的学校管理系统.zip
资源上传下载、课程学习等过程中有任何疑问或建议,欢迎提出宝贵意见哦~我们会及时处理!
点击此处反馈
安全验证
文档复制为VIP权益,开通VIP直接复制
信息提交成功