<div align="center">
<p>
<a align="left" href="https://ultralytics.com/yolov3" target="_blank">
<img width="850" src="https://user-images.githubusercontent.com/26833433/99805965-8f2ca800-2b3d-11eb-8fad-13a96b222a23.jpg"></a>
</p>
<br>
<div>
<a href="https://github.com/ultralytics/yolov3/actions"><img src="https://github.com/ultralytics/yolov3/workflows/CI%20CPU%20testing/badge.svg" alt="CI CPU testing"></a>
<a href="https://zenodo.org/badge/latestdoi/264818686"><img src="https://zenodo.org/badge/264818686.svg" alt="YOLOv3 Citation"></a>
<a href="https://hub.docker.com/r/ultralytics/yolov3"><img src="https://img.shields.io/docker/pulls/ultralytics/yolov3?logo=docker" alt="Docker Pulls"></a>
<br>
<a href="https://colab.research.google.com/github/ultralytics/yolov3/blob/master/tutorial.ipynb"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"></a>
<a href="https://www.kaggle.com/ultralytics/yolov3"><img src="https://kaggle.com/static/images/open-in-kaggle.svg" alt="Open In Kaggle"></a>
<a href="https://join.slack.com/t/ultralytics/shared_invite/zt-w29ei8bp-jczz7QYUmDtgo6r6KcMIAg"><img src="https://img.shields.io/badge/Slack-Join_Forum-blue.svg?logo=slack" alt="Join Forum"></a>
</div>
<br>
<div align="center">
<a href="https://github.com/ultralytics">
<img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-social-github.png" width="2%"/>
</a>
<img width="2%" />
<a href="https://www.linkedin.com/company/ultralytics">
<img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-social-linkedin.png" width="2%"/>
</a>
<img width="2%" />
<a href="https://twitter.com/ultralytics">
<img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-social-twitter.png" width="2%"/>
</a>
<img width="2%" />
<a href="https://youtube.com/ultralytics">
<img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-social-youtube.png" width="2%"/>
</a>
<img width="2%" />
<a href="https://www.facebook.com/ultralytics">
<img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-social-facebook.png" width="2%"/>
</a>
<img width="2%" />
<a href="https://www.instagram.com/ultralytics/">
<img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-social-instagram.png" width="2%"/>
</a>
</div>
<br>
<p>
YOLOv3 ð is a family of object detection architectures and models pretrained on the COCO dataset, and represents <a href="https://ultralytics.com">Ultralytics</a>
open-source research into future vision AI methods, incorporating lessons learned and best practices evolved over thousands of hours of research and development.
</p>
<!--
<a align="center" href="https://ultralytics.com/yolov3" target="_blank">
<img width="800" src="https://github.com/ultralytics/yolov5/releases/download/v1.0/banner-api.png"></a>
-->
</div>
## <div align="center">Documentation</div>
See the [YOLOv3 Docs](https://docs.ultralytics.com) for full documentation on training, testing and deployment.
## <div align="center">Quick Start Examples</div>
<details open>
<summary>Install</summary>
[**Python>=3.6.0**](https://www.python.org/) is required with all
[requirements.txt](https://github.com/ultralytics/yolov3/blob/master/requirements.txt) installed including
[**PyTorch>=1.7**](https://pytorch.org/get-started/locally/):
<!-- $ sudo apt update && apt install -y libgl1-mesa-glx libsm6 libxext6 libxrender-dev -->
```bash
$ git clone https://github.com/ultralytics/yolov3
$ cd yolov3
$ pip install -r requirements.txt
```
</details>
<details open>
<summary>Inference</summary>
Inference with YOLOv3 and [PyTorch Hub](https://github.com/ultralytics/yolov5/issues/36). Models automatically download
from the [latest YOLOv3 release](https://github.com/ultralytics/yolov3/releases).
```python
import torch
# Model
model = torch.hub.load('ultralytics/yolov3', 'yolov3') # or yolov3-spp, yolov3-tiny, custom
# Images
img = 'https://ultralytics.com/images/zidane.jpg' # or file, Path, PIL, OpenCV, numpy, list
# Inference
results = model(img)
# Results
results.print() # or .show(), .save(), .crop(), .pandas(), etc.
```
</details>
<details>
<summary>Inference with detect.py</summary>
`detect.py` runs inference on a variety of sources, downloading models automatically from
the [latest YOLOv3 release](https://github.com/ultralytics/yolov3/releases) and saving results to `runs/detect`.
```bash
$ python detect.py --source 0 # webcam
img.jpg # image
vid.mp4 # video
path/ # directory
path/*.jpg # glob
'https://youtu.be/Zgi9g1ksQHc' # YouTube
'rtsp://example.com/media.mp4' # RTSP, RTMP, HTTP stream
```
</details>
<details>
<summary>Training</summary>
<img width="800" src="https://user-images.githubusercontent.com/26833433/90222759-949d8800-ddc1-11ea-9fa1-1c97eed2b963.png">
</details>
<details open>
<summary>Tutorials</summary>
* [Train Custom Data](https://github.com/ultralytics/yolov3/wiki/Train-Custom-Data) ð RECOMMENDED
* [Tips for Best Training Results](https://github.com/ultralytics/yolov3/wiki/Tips-for-Best-Training-Results) âï¸
RECOMMENDED
* [Weights & Biases Logging](https://github.com/ultralytics/yolov5/issues/1289) ð NEW
* [Roboflow for Datasets, Labeling, and Active Learning](https://github.com/ultralytics/yolov5/issues/4975) ð NEW
* [Multi-GPU Training](https://github.com/ultralytics/yolov5/issues/475)
* [PyTorch Hub](https://github.com/ultralytics/yolov5/issues/36) â NEW
* [TorchScript, ONNX, CoreML Export](https://github.com/ultralytics/yolov5/issues/251) ð
* [Test-Time Augmentation (TTA)](https://github.com/ultralytics/yolov5/issues/303)
* [Model Ensembling](https://github.com/ultralytics/yolov5/issues/318)
* [Model Pruning/Sparsity](https://github.com/ultralytics/yolov5/issues/304)
* [Hyperparameter Evolution](https://github.com/ultralytics/yolov5/issues/607)
* [Transfer Learning with Frozen Layers](https://github.com/ultralytics/yolov5/issues/1314) â NEW
* [TensorRT Deployment](https://github.com/wang-xinyu/tensorrtx)
</details>
## <div align="center">Environments</div>
Get started in seconds with our verified environments. Click each icon below for details.
<div align="center">
<a href="https://colab.research.google.com/github/ultralytics/yolov3/blob/master/tutorial.ipynb">
<img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-colab-small.png" width="15%"/>
</a>
<a href="https://www.kaggle.com/ultralytics/yolov3">
<img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-kaggle-small.png" width="15%"/>
</a>
<a href="https://hub.docker.com/r/ultralytics/yolov3">
<img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-docker-small.png" width="15%"/>
</a>
<a href="https://github.com/ultralytics/yolov3/wiki/AWS-Quickstart">
<img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-aws-small.png" width="15%"/>
</a>
<a href="https://github.com/ultralytics/yolov3/wiki/GCP-Quickstart">
<img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-gcp-small.png" width="15%"/>
</a>
</div>
## <div align="center">Integrations</div>
<div align="center">
<a href="https://wandb.ai/site?utm_campaign=repo_yolo_readme">
<img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-wb-long.png" width="49%"/>
</a>
<a href="https://roboflow.com/?ref=ultralytics">
<img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-roboflow-long.png" width="49%"/>
</a>
</div>
|Weights and Biases|Roboflow â NEW|
|:-:|:-:|
|Automa
没有合适的资源?快使用搜索试试~ 我知道了~
YOLOv3钢材缺陷检测+权重+数据集
共145个文件
pyc:40个
py:28个
yaml:21个
1.该资源内容由用户上传,如若侵权请联系客服进行举报
2.虚拟产品一经售出概不退款(资源遇到问题,请及时私信上传者)
2.虚拟产品一经售出概不退款(资源遇到问题,请及时私信上传者)
版权申诉
0 下载量 48 浏览量
2023-03-24
13:09:16
上传
评论 1
收藏 374.98MB RAR 举报
温馨提示
1、YOLOv3钢材缺陷检测,分为几种缺陷类型,检测模型已经训练好,包含以及PR曲线,loss曲线等等 2、并附有数据集,使用lableimg软件标注软件标注好的钢材缺陷检测数据,图片格式为jpg,标签有两种,分别为xml格式和txt格式,分别保存在两个文件夹中, 3、数据集和检测结果参考:https://blog.csdn.net/zhiqingAI/article/details/124230743
资源推荐
资源详情
资源评论
收起资源包目录
YOLOv3钢材缺陷检测+权重+数据集 (145个子文件)
events.out.tfevents.1679278051.DESKTOP-AJP7QI2.62000.0 1.51MB
setup.cfg 923B
results.csv 35KB
Dockerfile 2KB
.dockerignore 4KB
.gitattributes 75B
.gitignore 4KB
.gitignore 50B
pytorch-yolov3-9.6.0.iml 498B
tutorial.ipynb 54KB
bus.jpg 476KB
val_batch1_pred.jpg 180KB
val_batch2_pred.jpg 176KB
val_batch1_labels.jpg 172KB
val_batch2_labels.jpg 167KB
zidane.jpg 165KB
val_batch0_pred.jpg 164KB
val_batch0_labels.jpg 162KB
train_batch0.jpg 138KB
train_batch2.jpg 130KB
train_batch1.jpg 125KB
LICENSE 34KB
README.md 13KB
README.md 10KB
CONTRIBUTING.md 5KB
F1_curve.png 256KB
results.png 243KB
P_curve.png 232KB
R_curve.png 226KB
PR_curve.png 190KB
confusion_matrix.png 145KB
yolov3.pt 118.55MB
best.pt 117.72MB
last.pt 117.72MB
yolov3-tiny.pt 16.96MB
datasets.py 44KB
general.py 34KB
train.py 32KB
common.py 27KB
wandb_utils.py 25KB
tf.py 20KB
plots.py 20KB
val.py 17KB
export.py 16KB
yolo.py 15KB
metrics.py 13KB
torch_utils.py 13KB
detect.py 12KB
augmentations.py 11KB
loss.py 9KB
autoanchor.py 7KB
__init__.py 7KB
downloads.py 6KB
experimental.py 4KB
hubconf.py 4KB
activations.py 4KB
callbacks.py 2KB
autobatch.py 2KB
sweep.py 1KB
log_dataset.py 1KB
__init__.py 445B
__init__.py 0B
__init__.py 0B
datasets.cpython-39.pyc 35KB
datasets.cpython-38.pyc 35KB
general.cpython-38.pyc 30KB
general.cpython-39.pyc 30KB
common.cpython-38.pyc 26KB
common.cpython-39.pyc 26KB
wandb_utils.cpython-39.pyc 19KB
wandb_utils.cpython-38.pyc 19KB
plots.cpython-38.pyc 18KB
plots.cpython-39.pyc 18KB
yolo.cpython-38.pyc 13KB
yolo.cpython-39.pyc 13KB
val.cpython-39.pyc 12KB
val.cpython-38.pyc 12KB
torch_utils.cpython-39.pyc 12KB
torch_utils.cpython-38.pyc 12KB
metrics.cpython-39.pyc 11KB
metrics.cpython-38.pyc 11KB
augmentations.cpython-39.pyc 9KB
augmentations.cpython-38.pyc 9KB
__init__.cpython-38.pyc 7KB
__init__.cpython-39.pyc 6KB
loss.cpython-39.pyc 6KB
loss.cpython-38.pyc 6KB
autoanchor.cpython-39.pyc 6KB
autoanchor.cpython-38.pyc 6KB
experimental.cpython-38.pyc 5KB
experimental.cpython-39.pyc 5KB
downloads.cpython-39.pyc 4KB
downloads.cpython-38.pyc 4KB
callbacks.cpython-38.pyc 2KB
callbacks.cpython-39.pyc 2KB
autobatch.cpython-39.pyc 2KB
autobatch.cpython-38.pyc 2KB
__init__.cpython-39.pyc 574B
__init__.cpython-38.pyc 574B
__init__.cpython-39.pyc 173B
共 145 条
- 1
- 2
资源评论
stsdddd
- 粉丝: 3w+
- 资源: 946
上传资源 快速赚钱
- 我的内容管理 展开
- 我的资源 快来上传第一个资源
- 我的收益 登录查看自己的收益
- 我的积分 登录查看自己的积分
- 我的C币 登录后查看C币余额
- 我的收藏
- 我的下载
- 下载帮助
最新资源
- 山东科技大学网络系统集成复习
- 软件技术交流平台设计与实现_902d9mj6.zip
- 仁和机构的体检预约系统的设计与实现_06t067ij.zip
- Insyde BIOS解锁工具
- 使用Matplotlib创建单个可视化图标.pdf
- 分布式数据存储基础与HDFS操作实践
- 优创农产预售链:SSM 与 JSP 打造的智能平台
- Matlab Cplex代码:基于消纳责任权重的两级电力市场优化运行模型 参考全球能源互联网的《基于消纳责任权重的两级电力市场优化运行模型》 Highlights:省间可再生能源交易,双层优化模型,采
- 社团报名管理系统(编号:16257342).zip
- 网上商城_8487fvc5.zip
- 数据驱动的资产管理系统_hfj1343u--论文.zip
- Formula One 表格控件,TTF16.ocx,版本为6.1.0.13
- Audiobookshelf Docker镜像-2.10.1
- 物流管理系统_79685nc7.zip
- python完整自动化爬虫+数据分析+绘图项目案例
- 西山区家政服务网站设计与开发_7zr5e6g5.zip
资源上传下载、课程学习等过程中有任何疑问或建议,欢迎提出宝贵意见哦~我们会及时处理!
点击此处反馈
安全验证
文档复制为VIP权益,开通VIP直接复制
信息提交成功