# Official YOLOv7
Implementation of paper - [YOLOv7: Trainable bag-of-freebies sets new state-of-the-art for real-time object detectors](https://arxiv.org/abs/2207.02696)
[![PWC](https://img.shields.io/endpoint.svg?url=https://paperswithcode.com/badge/yolov7-trainable-bag-of-freebies-sets-new/real-time-object-detection-on-coco)](https://paperswithcode.com/sota/real-time-object-detection-on-coco?p=yolov7-trainable-bag-of-freebies-sets-new)
[![Hugging Face Spaces](https://img.shields.io/badge/%F0%9F%A4%97%20Hugging%20Face-Spaces-blue)](https://huggingface.co/spaces/akhaliq/yolov7)
<a href="https://colab.research.google.com/gist/AlexeyAB/b769f5795e65fdab80086f6cb7940dae/yolov7detection.ipynb"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"></a>
[![arxiv.org](http://img.shields.io/badge/cs.CV-arXiv%3A2207.02696-B31B1B.svg)](https://arxiv.org/abs/2207.02696)
<div align="center">
<a href="./">
<img src="./figure/performance.png" width="79%"/>
</a>
</div>
## Web Demo
- Integrated into [Huggingface Spaces ����](https://huggingface.co/spaces/akhaliq/yolov7) using Gradio. Try out the Web Demo [![Hugging Face Spaces](https://img.shields.io/badge/%F0%9F%A4%97%20Hugging%20Face-Spaces-blue)](https://huggingface.co/spaces/akhaliq/yolov7)
## Performance
MS COCO
| Model | Test Size | AP<sup>test</sup> | AP<sub>50</sub><sup>test</sup> | AP<sub>75</sub><sup>test</sup> | batch 1 fps | batch 32 average time |
| :-- | :-: | :-: | :-: | :-: | :-: | :-: |
| [**YOLOv7**](https://github.com/WongKinYiu/yolov7/releases/download/v0.1/yolov7.pt) | 640 | **51.4%** | **69.7%** | **55.9%** | 161 *fps* | 2.8 *ms* |
| [**YOLOv7-X**](https://github.com/WongKinYiu/yolov7/releases/download/v0.1/yolov7x.pt) | 640 | **53.1%** | **71.2%** | **57.8%** | 114 *fps* | 4.3 *ms* |
| | | | | | | |
| [**YOLOv7-W6**](https://github.com/WongKinYiu/yolov7/releases/download/v0.1/yolov7-w6.pt) | 1280 | **54.9%** | **72.6%** | **60.1%** | 84 *fps* | 7.6 *ms* |
| [**YOLOv7-E6**](https://github.com/WongKinYiu/yolov7/releases/download/v0.1/yolov7-e6.pt) | 1280 | **56.0%** | **73.5%** | **61.2%** | 56 *fps* | 12.3 *ms* |
| [**YOLOv7-D6**](https://github.com/WongKinYiu/yolov7/releases/download/v0.1/yolov7-d6.pt) | 1280 | **56.6%** | **74.0%** | **61.8%** | 44 *fps* | 15.0 *ms* |
| [**YOLOv7-E6E**](https://github.com/WongKinYiu/yolov7/releases/download/v0.1/yolov7-e6e.pt) | 1280 | **56.8%** | **74.4%** | **62.1%** | 36 *fps* | 18.7 *ms* |
## Installation
Docker environment (recommended)
<details><summary> <b>Expand</b> </summary>
``` shell
# create the docker container, you can change the share memory size if you have more.
nvidia-docker run --name yolov7 -it -v your_coco_path/:/coco/ -v your_code_path/:/yolov7 --shm-size=64g nvcr.io/nvidia/pytorch:21.08-py3
# apt install required packages
apt update
apt install -y zip htop screen libgl1-mesa-glx
# pip install required packages
pip install seaborn thop
# go to code folder
cd /yolov7
```
</details>
## Testing
[`yolov7.pt`](https://github.com/WongKinYiu/yolov7/releases/download/v0.1/yolov7.pt) [`yolov7x.pt`](https://github.com/WongKinYiu/yolov7/releases/download/v0.1/yolov7x.pt) [`yolov7-w6.pt`](https://github.com/WongKinYiu/yolov7/releases/download/v0.1/yolov7-w6.pt) [`yolov7-e6.pt`](https://github.com/WongKinYiu/yolov7/releases/download/v0.1/yolov7-e6.pt) [`yolov7-d6.pt`](https://github.com/WongKinYiu/yolov7/releases/download/v0.1/yolov7-d6.pt) [`yolov7-e6e.pt`](https://github.com/WongKinYiu/yolov7/releases/download/v0.1/yolov7-e6e.pt)
``` shell
python test.py --data data/coco.yaml --img 640 --batch 32 --conf 0.001 --iou 0.65 --device 0 --weights yolov7.pt --name yolov7_640_val
```
You will get the results:
```
Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.51206
Average Precision (AP) @[ IoU=0.50 | area= all | maxDets=100 ] = 0.69730
Average Precision (AP) @[ IoU=0.75 | area= all | maxDets=100 ] = 0.55521
Average Precision (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.35247
Average Precision (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.55937
Average Precision (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.66693
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 1 ] = 0.38453
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 10 ] = 0.63765
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.68772
Average Recall (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.53766
Average Recall (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.73549
Average Recall (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.83868
```
To measure accuracy, download [COCO-annotations for Pycocotools](http://images.cocodataset.org/annotations/annotations_trainval2017.zip) to the `./coco/annotations/instances_val2017.json`
## Training
Data preparation
``` shell
bash scripts/get_coco.sh
```
* Download MS COCO dataset images ([train](http://images.cocodataset.org/zips/train2017.zip), [val](http://images.cocodataset.org/zips/val2017.zip), [test](http://images.cocodataset.org/zips/test2017.zip)) and [labels](https://github.com/WongKinYiu/yolov7/releases/download/v0.1/coco2017labels-segments.zip). If you have previously used a different version of YOLO, we strongly recommend that you delete `train2017.cache` and `val2017.cache` files, and redownload [labels](https://github.com/WongKinYiu/yolov7/releases/download/v0.1/coco2017labels-segments.zip)
Single GPU training
``` shell
# train p5 models
python train.py --workers 8 --device 0 --batch-size 32 --data data/coco.yaml --img 640 640 --cfg cfg/training/yolov7.yaml --weights '' --name yolov7 --hyp data/hyp.scratch.p5.yaml
# train p6 models
python train_aux.py --workers 8 --device 0 --batch-size 16 --data data/coco.yaml --img 1280 1280 --cfg cfg/training/yolov7-w6.yaml --weights '' --name yolov7-w6 --hyp data/hyp.scratch.p6.yaml
```
Multiple GPU training
``` shell
# train p5 models
python -m torch.distributed.launch --nproc_per_node 4 --master_port 9527 train.py --workers 8 --device 0,1,2,3 --sync-bn --batch-size 128 --data data/coco.yaml --img 640 640 --cfg cfg/training/yolov7.yaml --weights '' --name yolov7 --hyp data/hyp.scratch.p5.yaml
# train p6 models
python -m torch.distributed.launch --nproc_per_node 8 --master_port 9527 train_aux.py --workers 8 --device 0,1,2,3,4,5,6,7 --sync-bn --batch-size 128 --data data/coco.yaml --img 1280 1280 --cfg cfg/training/yolov7-w6.yaml --weights '' --name yolov7-w6 --hyp data/hyp.scratch.p6.yaml
```
## Transfer learning
[`yolov7_training.pt`](https://github.com/WongKinYiu/yolov7/releases/download/v0.1/yolov7_training.pt) [`yolov7x_training.pt`](https://github.com/WongKinYiu/yolov7/releases/download/v0.1/yolov7x_training.pt) [`yolov7-w6_training.pt`](https://github.com/WongKinYiu/yolov7/releases/download/v0.1/yolov7-w6_training.pt) [`yolov7-e6_training.pt`](https://github.com/WongKinYiu/yolov7/releases/download/v0.1/yolov7-e6_training.pt) [`yolov7-d6_training.pt`](https://github.com/WongKinYiu/yolov7/releases/download/v0.1/yolov7-d6_training.pt) [`yolov7-e6e_training.pt`](https://github.com/WongKinYiu/yolov7/releases/download/v0.1/yolov7-e6e_training.pt)
Single GPU finetuning for custom dataset
``` shell
# finetune p5 models
python train.py --workers 8 --device 0 --batch-size 32 --data data/custom.yaml --img 640 640 --cfg cfg/training/yolov7-custom.yaml --weights 'yolov7_training.pt' --name yolov7-custom --hyp data/hyp.scratch.custom.yaml
# finetune p6 models
python train_aux.py --workers 8 --device 0 --batch-size 16 --data data/custom.yaml --img 1280 1280 --cfg cfg/training/yolov7-w6-custom.yaml --weights 'yolov7-w6_training.pt' --name yolov7-w6-custom --hyp data/hyp.scratch.custom.yaml
```
## Re-parameterization
See [reparameterization.ipynb](tools/reparameterization.ipynb)
## Inference
On video:
``` shell
python detect.py --weights
没有合适的资源?快使用搜索试试~ 我知道了~
YOLOv7训练好的飞机检测模型+权重+数据集
共3649个文件
jpg:1196个
xml:1166个
txt:1165个
1.该资源内容由用户上传,如若侵权请联系客服进行举报
2.虚拟产品一经售出概不退款(资源遇到问题,请及时私信上传者)
2.虚拟产品一经售出概不退款(资源遇到问题,请及时私信上传者)
版权申诉
5星 · 超过95%的资源 2 下载量 87 浏览量
2023-03-09
12:40:44
上传
评论 3
收藏 258.78MB RAR 举报
温馨提示
1、YOLOv7训练好的飞机检测模型,包含训练好的飞机识别权重。并包含标注好的数据集,标签格式为xml和txt两种,类别名为aeroplane,配置好环境后可以直接使用 2、数据集和检测结果参考:https://blog.csdn.net/zhiqingAI/article/details/124230743 3、采用pytrch框架,代码是python的
资源推荐
资源详情
资源评论
收起资源包目录
YOLOv7训练好的飞机检测模型+权重+数据集 (3649个子文件)
events.out.tfevents.1669973943.DESKTOP-AJP7QI2.19860.0 77KB
Dockerfile 821B
.gitignore 4KB
.gitignore 50B
yolov7-main.iml 492B
YOLOv7-Dynamic-Batch-TENSORRT.ipynb 12.01MB
YOLOv7-Dynamic-Batch-ONNXRUNTIME.ipynb 5.66MB
compare_YOLOv7_vs_YOLOv5m6_half.ipynb 3.75MB
compare_YOLOv7e6_vs_YOLOv5x6_half.ipynb 3.74MB
compare_YOLOv7e6_vs_YOLOv5x6.ipynb 3.74MB
compare_YOLOv7_vs_YOLOv5m6.ipynb 3.73MB
compare_YOLOv7_vs_YOLOv5s6.ipynb 3.73MB
YOLOv7trt.ipynb 1.69MB
YOLOv7onnx.ipynb 1.47MB
YOLOv7CoreML.ipynb 873KB
visualization.ipynb 482KB
instance.ipynb 477KB
keypoint.ipynb 465KB
reparameterization.ipynb 31KB
img00149.jpg 4.11MB
bus.jpg 476KB
img00178.jpg 269KB
2010_001426.jpg 250KB
2008_008086.jpg 204KB
test_batch2_pred.jpg 187KB
test_batch1_pred.jpg 186KB
test_batch2_labels.jpg 185KB
train_batch9.jpg 184KB
2008_004847.jpg 184KB
2010_000622.jpg 184KB
test_batch1_labels.jpg 180KB
dog_result.jpg 180KB
train_batch7.jpg 175KB
test_batch0_pred.jpg 175KB
2008_004648.jpg 173KB
test_batch0_labels.jpg 173KB
train_batch3.jpg 169KB
2008_008050.jpg 167KB
train_batch1.jpg 166KB
zidane.jpg 165KB
train_batch2.jpg 164KB
2008_004646.jpg 164KB
2011_002504.jpg 163KB
2008_006169.jpg 162KB
train_batch5.jpg 162KB
train_batch6.jpg 162KB
dog.jpg 160KB
2009_005232.jpg 157KB
2010_002141.jpg 152KB
horses_prediction.jpg 151KB
2009_004969.jpg 151KB
2010_001505.jpg 151KB
2008_003155.jpg 150KB
train_batch8.jpg 149KB
2008_006637.jpg 149KB
2008_001468.jpg 148KB
2010_005942.jpg 148KB
2009_002680.jpg 148KB
2009_004917.jpg 146KB
train_batch0.jpg 146KB
2011_000790.jpg 145KB
2009_000661.jpg 145KB
2011_001699.jpg 144KB
train_batch4.jpg 144KB
2008_006140.jpg 144KB
img00133.jpg 144KB
2010_001085.jpg 143KB
2010_003655.jpg 143KB
2009_004820.jpg 142KB
2011_000586.jpg 142KB
2008_002358.jpg 141KB
2009_000225.jpg 141KB
2010_000939.jpg 141KB
2009_002001.jpg 141KB
2008_008130.jpg 141KB
2010_002357.jpg 141KB
image2.jpg 140KB
2009_000513.jpg 140KB
2011_001800.jpg 139KB
2010_004455.jpg 139KB
2008_003041.jpg 138KB
2010_004601.jpg 138KB
2010_004118.jpg 137KB
2009_002099.jpg 136KB
2010_005877.jpg 134KB
2008_003478.jpg 133KB
2011_000698.jpg 133KB
2010_002310.jpg 133KB
2008_005796.jpg 132KB
2009_003396.jpg 131KB
2010_002638.jpg 131KB
2008_003744.jpg 131KB
horses.jpg 130KB
2011_001880.jpg 130KB
2008_008607.jpg 130KB
2008_000251.jpg 130KB
2009_002211.jpg 129KB
2008_007970.jpg 129KB
2008_008096.jpg 129KB
2011_000359.jpg 129KB
共 3649 条
- 1
- 2
- 3
- 4
- 5
- 6
- 37
资源评论
- 惟神常潇2023-05-31怎么能有这么好的资源!只能用感激涕零来形容TAT...
- qq_520974362024-01-14资源内容总结地很全面,值得借鉴,对我来说很有用,解决了我的燃眉之急。
stsdddd
- 粉丝: 3w+
- 资源: 967
上传资源 快速赚钱
- 我的内容管理 展开
- 我的资源 快来上传第一个资源
- 我的收益 登录查看自己的收益
- 我的积分 登录查看自己的积分
- 我的C币 登录后查看C币余额
- 我的收藏
- 我的下载
- 下载帮助
最新资源
- 电子学习资料设计作品全资料远程温度控制系统资料
- 电子学习资料设计作品全资料智能风扇调速系统资料
- 一体式抽油烟机模型sw18可编辑全套技术资料100%好用.zip.zip
- 基于深度学习的交通标志识别系统(django)源代码(python毕业设计完整源码+LW).zip
- 电子学习资料设计作品全资料智能台灯设计资料
- 电子学习资料设计作品全资料智能温度报警系统设计资料
- 电子学习资料设计作品全资料自动加料机控制系统资料
- 新代-山龙-众泰克-维宏通用 - 副本.arp
- 盐厂装箱机Pro5.0全套技术资料100%好用.zip.zip
- 基于深度学习的身份证识别考勤系统(django)源代码(python毕业设计完整源码+LW).zip
- 电子学习资料设计作品文档1.5V调频无线话筒电路制作
- 一体化滤池sw16可编辑全套技术资料100%好用.zip.zip
- 电子学习资料设计作品文档电容降压电源原理和计算公式
- 油管切断机sw18可编辑全套技术资料100%好用.zip.zip
- 电子学习资料设计作品文档电子琴
- 电子学习资料设计作品文档频率计
资源上传下载、课程学习等过程中有任何疑问或建议,欢迎提出宝贵意见哦~我们会及时处理!
点击此处反馈
安全验证
文档复制为VIP权益,开通VIP直接复制
信息提交成功