# DCFNet_pytorch<sub>([arXiv](https://arxiv.org/pdf/1704.04057.pdf))</sub>
This repository contains a Python *reimplementation* of the [**DCFNet**](https://arxiv.org/pdf/1704.04057.pdf).
### Why implementation in python (PyTorch)?
- Magical **Autograd** mechanism via PyTorch. Do not need to know the complicated BP.
- Fast Fourier Transforms (**FFT**) supported by PyTorch 0.4.0.
- Engineering demand.
- Fast test speed (**120 FPS** on GTX 1060) and **Multi-GPUs** training.
### Contents
1. [Requirements](#requirements)
2. [Test](#test)
3. [Train](#train)
4. [Citing DCFNet](#citing-dcfnet)
## Requirements
```shell
git clone --depth=1 https://github.com/foolwood/DCFNet_pytorch
```
Requirements for **PyTorch 0.4.0** and opencv-python
```shell
conda install pytorch torchvision -c pytorch
conda install -c menpo opencv
```
Training data (VID) and Test dataset (OTB).
## Test
```shell
cd DCFNet_pytorch/track
ln -s /path/to/your/OTB2015 ./dataset/OTB2015
ln -s ./dataset/OTB2015 ./dataset/OTB2013
cd dataset & python gen_otb2013.py
python DCFNet.py
```
## Train
1. Download training data. ([**ILSVRC2015 VID**](http://bvisionweb1.cs.unc.edu/ilsvrc2015/download-videos-3j16.php#vid))
```
./ILSVRC2015
├── Annotations
│ └── VID├── a -> ./ILSVRC2015_VID_train_0000
│ ├── b -> ./ILSVRC2015_VID_train_0001
│ ├── c -> ./ILSVRC2015_VID_train_0002
│ ├── d -> ./ILSVRC2015_VID_train_0003
│ ├── e -> ./val
│ ├── ILSVRC2015_VID_train_0000
│ ├── ILSVRC2015_VID_train_0001
│ ├── ILSVRC2015_VID_train_0002
│ ├── ILSVRC2015_VID_train_0003
│ └── val
├── Data
│ └── VID...........same as Annotations
└── ImageSets
└── VID
```
2. Prepare training data for `dataloader`.
```shell
cd DCFNet_pytorch/train/dataset
python parse_vid.py <VID_path> # save all vid info in a single json
python gen_snippet.py # generate snippets
python crop_image.py # crop and generate a json for dataloader
```
3. Training. (on multiple ***GPUs*** :zap: :zap: :zap: :zap:)
```
cd DCFNet_pytorch/train/
CUDA_VISIBLE_DEVICES=0,1,2,3 python train_DCFNet.py
```
## Fine-tune hyper-parameter
1. After training, you can simple test the model with default parameter.
```shell
cd DCFNet_pytorch/track/
python DCFNet --model ../train/work/crop_125_2.0/checkpoint.pth.tar
```
2. Search a better hyper-parameter.
```shell
CUDA_VISIBLE_DEVICES=0 python tune_otb.py # run on parallel to speed up searching
python eval_otb.py OTB2013 * 0 10000
```
## Citing DCFNet
If you find [**DCFNet**](https://arxiv.org/pdf/1704.04057.pdf) useful in your research, please consider citing:
```
@article{wang2017dcfnet,
title={DCFNet: Discriminant Correlation Filters Network for Visual Tracking},
author={Wang, Qiang and Gao, Jin and Xing, Junliang and Zhang, Mengdan and Hu, Weiming},
journal={arXiv preprint arXiv:1704.04057},
year={2017}
}
```
评论1