# Bird Watch
A Deep Learning based Bird Image Identification System, using Keras, TensorFlow, OpenCV, and Flask.
## Introduction
The *'Bird Watch'* project, created by an amateur photographer and a machine learning enthusiast, is a solution to a simple problem faced by fellow wildlife photographers: a way to identify birds in photographs. The application is developed using Keras and TensorFlow, with Flask for the web application. InceptionV3 was used as the base model and was trained using transfer learning and fine-tuning techniques.
The live application can be found at [https://www.birdwatch.photo/](https://www.birdwatch.photo/)
## Usage
### Setup
The libraries required to run the Flask app can be installed via the following commands.
Using PIP:
```bash
pip install -r requirements.txt
```
Using Conda:
```bash
conda install numpy scipy h5py Pillow Click Flask itsdangerous Jinja2 MarkupSafe Werkzeug tensorflow
pip install keras
```
Note: You can install `tensorflow-gpu` (instead of tensorflow) if you have a CUDA capable GPU.
### Running the App
First, head over to the [Releases page](https://github.com/Thimira/bird_watch/releases/latest) and grab the latest `final_model_*.h5` and `class_indices_*.npy` files, and place them in the `models` directory.
You can then start the Flask app can be run by running,
```bash
python application.py
```
The app would by default run on `http://127.0.0.1:5000/`
### Training with your own data
In order to train with you own images, create a `data/train` directory and place your images within sub-directories for each class within the train directory (as required by the flow_from_directory function of Keras: [https://keras.io/preprocessing/image/](https://keras.io/preprocessing/image/) ). Create a `data/models` directory for the bottleneck features and the trained models to be saved. You can also create a `data/eval` directory and place few sample images there to evaluate the model after training.
Once you have the data ready, you can run,
```bash
python bird_watch_train.py
```
This will run the combined training and fine-tuning script which will generate the final model files.
Note: The training may take 10+ hours to run, even on a GPU such as a RTX 2070.
Once the training is over, you will have `final_model_*.h5` and `class_indices_*.npy` in your `data/models` directory. Copy them over to your top level `models` directory and you'll be good to go.
## Dependencies
### Runtime
The main requirements to run the Flask application are:
- TensorFlow
- Keras
- Flask
The full set of runtime dependencies are in the requirements.txt
### Training
In order to re-train the model, the following additional libs are needed:
- OpenCV
- Matplotlib
- Pillow
## Author
- [Thimira Amaratunga](https://github.com/Thimira)
没有合适的资源?快使用搜索试试~ 我知道了~
bird_watch:基于深度学习的鸟类图像识别系统
共49个文件
py:14个
png:10个
jpg:5个
需积分: 50 17 下载量 169 浏览量
2021-05-04
15:15:21
上传
评论 8
收藏 3.07MB ZIP 举报
温馨提示
观鸟 基于深度学习的鸟类图像识别系统,使用Keras,TensorFlow,OpenCV和Flask。 介绍 由业余摄影师和机器学习爱好者创建的“观鸟”项目是野生动物摄影师面临的一个简单问题的解决方案:一种识别照片中鸟类的方法。 该应用程序是使用Keras和TensorFlow开发的,其中Flask用于Web应用程序。 InceptionV3用作基本模型,并使用转移学习和微调技术进行了培训。 可以在找到实时应用程序 用法 设置 可以通过以下命令安装运行Flask应用所需的库。 使用画中画: pip install -r requirements.txt 使用Conda: conda install numpy scipy h5py Pillow Click Flask itsdangerous Jinja2 MarkupSafe Werkzeug tensorflow pip i
资源详情
资源评论
资源推荐
收起资源包目录
bird_watch-master.zip (49个子文件)
bird_watch-master
conf
application.ini 844B
models
README.md 127B
uploads
.gitkeep 8B
birdwatch
__init__.py 0B
callbacks
__init__.py 76B
trainingmonitor.py 3KB
requirements.txt 179B
.ebextensions
alb-http-to-https-redirection.config 2KB
LICENSE 1KB
samples
.gitkeep 8B
README.md 3KB
application.py 14KB
old_train_code
bird_watch_train_optimized_old.py 14KB
bird_watch_bottleneck_inceptionv3.py 9KB
bird_watch_train.py 8KB
finetune_continue_cp.py 5KB
bird_watch_finetune_inceptionv3.py 4KB
bird_watch_finetune.py 5KB
bird_watch_finetune_predict.py 3KB
bird_watch_bottleneck.py 10KB
bird_watch_finetune_predict_inceptionv3.py 3KB
templates
index.html 12KB
ads.txt 54B
about.html 9KB
howitworks.html 7KB
base.html 7KB
sitemap_template.xml 249B
.gitignore 1KB
bird_watch_train_optimized.py 14KB
static
favicon.png 1KB
robots.txt 75B
images
logo-white.png 22KB
DeepLearningVenn.png 9KB
BuildDeeper.jpg 73KB
hero-bg.jpg 48KB
model.svg 957KB
logo-promo.jpg 41KB
logo-dark.png 20KB
DLonWin.jpg 67KB
MLTimeline.png 48KB
model.png 2.29MB
Author.jpg 401KB
logo-nav.png 4KB
.gitkeep 8B
logo-dark-m.png 9KB
training.png 300KB
promo-card.png 158KB
js
rating.js 2KB
index.js 2KB
共 49 条
- 1
格秒索杉
- 粉丝: 29
- 资源: 4562
上传资源 快速赚钱
- 我的内容管理 展开
- 我的资源 快来上传第一个资源
- 我的收益 登录查看自己的收益
- 我的积分 登录查看自己的积分
- 我的C币 登录后查看C币余额
- 我的收藏
- 我的下载
- 下载帮助
最新资源
资源上传下载、课程学习等过程中有任何疑问或建议,欢迎提出宝贵意见哦~我们会及时处理!
点击此处反馈
安全验证
文档复制为VIP权益,开通VIP直接复制
信息提交成功
评论0