车辆图像识别
概括
该项目的目标是根据斯坦福大学AI网站( )上预先配置的数据集,按品牌,型号和年份对汽车进行分类。 数据预先设置了所有图像的标签和边框。 将图像调整为边界框尺寸,并保存为原始图像。 通过使用TensorFlow的图像数据生成器将图像转换为像素数据矩阵,使用了卷积神经网络将看不见的验证图像分类为不同的汽车品牌。 从网站上找到的所有数据的总和来看,总共有16,185张图像,分为90/10的训练/测试比率。 像EfficientNet系列和InceptionV3这样的预先训练的模型,以前在'Imagenet'数据集上进行了训练,用于获得〜85%的最终精度。
结果
使用EfficientNetB1的模型格式,其中一部分图层保持在ImageNet数据集上学习的预训练权重,基于CNN模型看不到的图像,预测特定汽车的年份,品牌和模型的准确性达到〜85%。 。 以下是结果和模型的摘要:
评论0
最新资源