第
36
卷第
7
期
2008
年
7
月
华中科技大学学报(自然科学版)
1.
H uazhong Univ. of Sci.
&.
Tech. (Natural Science Edition)
Vo
l.
36
No.
7
J ul. 2008
基于表面法线和元胞自动机的自由曲面重构
许斌唐立新师汉民
(华中科技大学机械科学与工程学院,湖北武汉
430074)
摘要:通过
2
个阶段实现了从单目灰度图像重构自由曲面的过程
:a.
对表面法线通过
3
个约束条件进行逐步
调整,光滑约束保证表面法线的光滑过度和可积性,灰度梯度约束确保重构所得的灰度梯度和原始图像的灰
度梯度一致,灰度约束保证每点的法线满足光照模型
;b.
利用一个二维元胞自动机系统,从表面法线重构自
由曲面,每个元胞具有自我决策能力,以表面法线为模板,根据自动机系统的自组织行为,实现自由曲面的重
构.实验验证了本算法的可行性和准确性,与传统算法相比,重构精度至少提高
30
%.
关
键
词:计算机视觉;从明暗恢复形貌;表面法线;二次曲面光
}I
质;元胞自动机
中图分类号:
TP391
文献标识码
A
文章编号
1671-4512(2008)07-0100-05
Reconstruction of freeform surface using needle
map and cellular automata
Xu
Bi71
Ta71g L
i.r
i71
Shi
Ha71mi71
(College of Mechanical Science and Engineering, H uazhong University
of Science and Technology
, Wuhan 430074 , China)
Abstract:
A
method
for
computing
the
depth
of
freeform
surface
from
a
single
grayscale
image
in
two
steps
is
presented.
The
surface
normals
were
parallelly
and
gradually
adjusted
by
a
procedure
,
which
includes
three
constraints:
smooth
constraint
ensures
the
recovered
normals
are
smooth
and
integra
ble
,
int
巳丑
sity
gradient
constraint
ensures
the
recovered
normals
are
consistent
with
the
image
gradient
field
and
intensity
constraint
guarante
巳
s
the
recovered
intensity
is
equal
to
the
input
image.
The
sur
face
was
recovered
from
needle
map
using
a
two-dimensional
cellular
automata
system.
An
experime
且
tal
assessment
is
provided
for
our
methods
on
both
real
world
image
and
synthetic
image
with
known
ground
truth.
The
experiment
results
demonstrate
this
approach
is
practicable
and
can
improve
recon
struction
precision
at
least
30
%
compared
with
traditional
methods.
Key
words:
computer
vision;
shape
from
shading;
needle
map;
quadric
smooth;
cellular
automata
从明暗恢复形貌
(shape
from
shading
,简称
SFS)
是自由曲面重构的一种典型计算机视觉方
法
[lJ
传统的
SFS
方法认为物体表面反射模型为
朗伯体漫反射模型飞并假定成像几何关系为正
交投影,于是,图像上每一点的灰,
λ
仅与光源和物
体表面的相对位置和方向有关,
l(
x ,
y)
=
ρ
(n
•
s)
=
R(
ρ
,
q)
,
(1)
收稿日期
2007-09-02
式中
:n=(
一户
,
_q
,l)
T
是由面表面上点
(x
,
川的
单位法线矢量
;s=
(一丸
,
-q"l)T
是光源方向矢
量
;
1
是所得的图像灰度值
;ρ
是表面的反射率.由
式(1)可知,仅知道每点的灰度值,要计算出该点
的法线方向或高度梯度值,这是个病态问题,需要
增加其他约束条件才能求解.常用的约束有灰度
约束、光滑约束、可积性约束①.典型的
SFS
算法
作者简介:许斌
0980-)
,男,搏士研究生,
E-mail: stanfordxu@163.com
基金项目:国家自然科学基金资助项目
(50475135).
( Horn B K P. Shape from shading: a method for obtaining the shape information of a smooth opaque objection
from one view
[D].
Cambridge Massachusettes: Artificial Intelligence Laboratory, 1970.