这份资料是2018年全国中考数学真题汇编,专注于图形的对称性这一主题,涵盖了多项选择题,涉及轴对称图形的基本概念、性质及其应用。通过对这些题目和解析的学习,考生可以深入理解以下几个核心知识点:
1. **轴对称图形**:轴对称图形是指关于某条直线(对称轴)折叠后能完全重合的图形。例如,等边三角形、矩形、正方形等都是轴对称图形。试题中通过分析图形的结构,要求识别轴对称图形或找出对称轴。
2. **对称点和对称轴**:对称点是关于对称轴对称的两个点,它们到对称轴的距离相等。例如,题目中点P关于AC的对称点M',连接M'N可以找到MP+PN的最小值。
3. **对称轴的性质**:对称轴将图形分为两部分,这两部分完全相同。在解决实际问题时,如计算距离的最小值,可以通过构造对称图形来简化问题,如在第一题中通过构造M'N来求MP+NP的最小值。
4. **点关于坐标轴的对称**:点关于y轴对称,横坐标互为相反数,纵坐标保持不变;关于x轴对称,纵坐标互为相反数,横坐标保持不变。例如,题目中点A关于y轴的对称点的坐标为(1,2)。
5. **图形的对称轴数量**:不同的图形对称轴的数量不同,如等边三角形有3条,矩形有2条,正方形有4条,平行四边形一般没有对称轴。
6. **非轴对称图形**:有些图形不具备轴对称性,如某些不规则四边形或特定的三角形,例如题中的某些选项。
7. **悬针篆文的轴对称性**:悬针篆文是一种书法字体,题目中考察了其轴对称性质,通过对各个选项的分析判断其是否为轴对称图形。
8. **轴对称图形的识别**:题目通过展示各种图形,训练考生快速识别图形的对称特性,如五角星有5条对称轴,某些图形如平行四边形通常没有对称轴。
9. **图形的拼接与面积计算**:最后一题涉及到图形的拼接,通过分析图形的对称性,可以帮助计算阴影部分的面积,这需要对图形的几何性质有深刻的理解。
通过对这些题目的解答,考生不仅可以巩固轴对称图形的理论知识,还能提高空间想象能力和逻辑推理能力,为后续的数学学习打下坚实基础。在复习和准备中考的过程中,考生应多做此类练习,理解和掌握图形对称性的各种应用。