%% 1.环境清理
clear, clc, close all;
%% 2.导入数据
data=xlsread('data.csv');
data1=data;
% 原始数据绘图
figure
plot(data,'-s','Color',[0 0 255]./255,'linewidth',1,'Markersize',5,'MarkerFaceColor',[0 0 255]./255)
legend('原始数据','Location','NorthWest','FontName','华文宋体');
xlabel('样本','fontsize',12,'FontName','华文宋体');
ylabel('数值','fontsize',12,'FontName','华文宋体');
%% 3.数据处理
numTimeStepsTrain = floor(85);%85数据训练 ,7个用来验证
[XTrain,YTrain,XTest,YTest,mu,sig] = shujuchuli(data,numTimeStepsTrain);
%% 4.定义LSTM结构参数
numFeatures= 1;%输入节点
numResponses = 1;%输出节点
numHiddenUnits = 500;%隐含层神经元节点数
%构建 LSTM网络
layers = [sequenceInputLayer(numFeatures)
lstmLayer(numHiddenUnits) %lstm函数
dropoutLayer(0.2)%丢弃层概率
reluLayer('name','relu')% 激励函数 RELU
fullyConnectedLayer(numResponses)
regressionLayer];
XTrain=XTrain';
YTrain=YTrain';
%% 5.定义LSTM函数参数
def_options();
%% 6.训练LSTM网络
net = trainNetwork(XTrain,YTrain,layers,options);
%% 7.建立训练模型
net = predictAndUpdateState(net,XTrain);
%% 8.仿真预测(训练集)
M = numel(XTrain);
for i = 1:M
[net,YPred_1(:,i)] = predictAndUpdateState(net,XTrain(:,i),'ExecutionEnvironment','cpu');%
end
T_sim1 = sig*YPred_1 + mu;%预测结果去标准化 ,恢复原来的数量级
%% 9.仿真预测(验证集)
N = numel(XTest);
for i = 1:N
[net,YPred_2(:,i)] = predictAndUpdateState(net,XTest(:,i),'ExecutionEnvironment','cpu');%
end
T_sim2 = sig*YPred_2 + mu;%预测结果去标准化 ,恢复原来的数量级
%% 10.评价指标
% 均方根误差
T_train=data1(1:M)';
T_test=data1(M+1:end)';
error1 = sqrt(sum((T_sim1 - T_train).^2) ./ M);
error2 = sqrt(sum((T_sim2 - T_test ).^2) ./ N);
% MAE
mae1 = sum(abs(T_sim1 - T_train)) ./ M ;
mae2 = sum(abs(T_sim2 - T_test )) ./ N ;
disp(['训练集数据的MAE为:', num2str(mae1)])
disp(['验证集数据的MAE为:', num2str(mae2)])
% MAPE
maep1 = sum(abs(T_sim1 - T_train)./T_train) ./ M ;
maep2 = sum(abs(T_sim2 - T_test )./T_test) ./ N ;
disp(['训练集数据的MAPE为:', num2str(maep1)])
disp(['验证集数据的MAPE为:', num2str(maep2)])
% RMSE
RMSE1 = sqrt(sumsqr(T_sim1 - T_train)/M);
RMSE2 = sqrt(sumsqr(T_sim2 - T_test)/N);
disp(['训练集数据的RMSE为:', num2str(RMSE1)])
disp(['验证集数据的RMSE为:', num2str(RMSE2)])
%% 11. 绘图
figure
subplot(2,1,1)
plot(T_sim1,'-s','Color',[255 0 0]./255,'linewidth',1,'Markersize',5,'MarkerFaceColor',[250 0 0]./255)
hold on
plot(T_train,'-o','Color',[150 150 150]./255,'linewidth',0.8,'Markersize',4,'MarkerFaceColor',[150 150 150]./255)
legend( 'LSTM拟合训练数据','实际分析数据','Location','NorthWest','FontName','华文宋体');
title('LSTM模型预测结果及真实值','fontsize',12,'FontName','华文宋体')
xlabel('样本','fontsize',12,'FontName','华文宋体');
ylabel('数值','fontsize',12,'FontName','华文宋体');
xlim([1 M])
%-------------------------------------------------------------------------------------
subplot(2,1,2)
bar((T_sim1 - T_train)./T_train)
legend('LSTM模型训练集相对误差','Location','NorthEast','FontName','华文宋体')
title('LSTM模型训练集相对误差','fontsize',12,'FontName','华文宋体')
ylabel('误差','fontsize',12,'FontName','华文宋体')
xlabel('样本','fontsize',12,'FontName','华文宋体')
xlim([1 M]);
%-------------------------------------------------------------------------------------
figure
subplot(2,1,1)
plot(T_sim2,'-s','Color',[0 0 255]./255,'linewidth',1,'Markersize',5,'MarkerFaceColor',[0 0 255]./255)
hold on
plot(T_test,'-o','Color',[0 0 0]./255,'linewidth',0.8,'Markersize',4,'MarkerFaceColor',[0 0 0]./255)
legend('LSTM预测测试数据','实际分析数据','Location','NorthWest','FontName','华文宋体');
title('LSTM模型预测结果及真实值','fontsize',12,'FontName','华文宋体')
xlabel('样本','fontsize',12,'FontName','华文宋体');
ylabel('数值','fontsize',12,'FontName','华文宋体');
xlim([1 N])
%-------------------------------------------------------------------------------------
subplot(2,1,2)
bar((T_sim2 - T_test )./T_test)
legend('LSTM模型测试集相对误差','Location','NorthEast','FontName','华文宋体')
title('LSTM模型测试集相对误差','fontsize',12,'FontName','华文宋体')
ylabel('误差','fontsize',12,'FontName','华文宋体')
xlabel('样本','fontsize',12,'FontName','华文宋体')
xlim([1 N]);
%% 12.预测未来
P = 7;% 预测未来数量
YPred_3 = [];%预测结果清零
[T_sim3] = yuceweilai(net,XTrain,data,P,YPred_3,sig,mu)
%% 13.绘图
figure
plot(1:size(data,1),data,'-s','Color',[255 0 0]./255,'linewidth',1,'Markersize',5,'MarkerFaceColor',[250 0 0]./255)
hold on
plot(size(data,1)+1:size(data,1)+P,T_sim3,'-o','Color',[150 150 150]./255,'linewidth',0.8,'Markersize',4,'MarkerFaceColor',[150 150 150]./255)
legend( 'LSTM预测结果','Location','NorthWest','FontName','华文宋体');
title('LSTM模型预测结果','fontsize',12,'FontName','华文宋体')
xlabel('样本','fontsize',12,'FontName','华文宋体');
ylabel('数值','fontsize',12,'FontName','华文宋体');
没有合适的资源?快使用搜索试试~ 我知道了~
【LSTM时序预测】基于长短记忆神经网络LSTM实现交通流时间序列单步预测含验证和预测未来附matlab代码.rar
共9个文件
m:4个
png:3个
mat:1个
1.该资源内容由用户上传,如若侵权请联系客服进行举报
2.虚拟产品一经售出概不退款(资源遇到问题,请及时私信上传者)
2.虚拟产品一经售出概不退款(资源遇到问题,请及时私信上传者)
版权申诉
0 下载量 90 浏览量
2024-10-28
21:45:01
上传
评论
收藏 14.54MB RAR 举报
温馨提示
1.版本:matlab2014/2019a/2024a 2.附赠案例数据可直接运行matlab程序。 3.代码特点:参数化编程、参数可方便更改、代码编程思路清晰、注释明细。 4.适用对象:计算机,电子信息工程、数学等专业的大学生课程设计、期末大作业和毕业设计。
资源推荐
资源详情
资源评论
收起资源包目录
【LSTM时序预测】基于长短记忆神经网络LSTM实现交通流时间序列单步预测含验证和预测未来附matlab代码.rar (9个子文件)
yuceweilai.m 345B
3.png 58KB
def_options.m 557B
1.png 53KB
shujuchuli.m 631B
run_main.m 5KB
result.mat 7.14MB
data.csv 2KB
2.png 31KB
共 9 条
- 1
资源评论
天天Matlab科研工作室
- 粉丝: 4w+
- 资源: 9813
上传资源 快速赚钱
- 我的内容管理 展开
- 我的资源 快来上传第一个资源
- 我的收益 登录查看自己的收益
- 我的积分 登录查看自己的积分
- 我的C币 登录后查看C币余额
- 我的收藏
- 我的下载
- 下载帮助
最新资源
资源上传下载、课程学习等过程中有任何疑问或建议,欢迎提出宝贵意见哦~我们会及时处理!
点击此处反馈
安全验证
文档复制为VIP权益,开通VIP直接复制
信息提交成功