%% 初始化程序
warning off % 关闭报警信息
close all % 关闭所有图窗
clear % 清空变量
clc % 清空命令行
print_copr; % 版权所有
%% 数据读取
data=xlsread('数据.xlsx','Sheet1','A1:N252'); %%使用xlsread函数读取EXCEL中对应范围的数据即可
%输入输出数据
input=data(:,1:end-1); %data的第一列-倒数第二列为特征指标
output=data(:,end); %data的最后面一列为输出的指标值
N=length(output); %全部样本数目
testNum=15; %设定测试样本数目
trainNum=N-testNum; %计算训练样本数目
%% 划分训练集、测试集
input_train = input(1:trainNum,:)';
output_train =output(1:trainNum)';
input_test =input(trainNum+1:trainNum+testNum,:)';
output_test =output(trainNum+1:trainNum+testNum)';
%% 数据归一化
[inputn,inputps]=mapminmax(input_train,0,1);
[outputn,outputps]=mapminmax(output_train);
inputn_test=mapminmax('apply',input_test,inputps);
%% 获取输入层节点、输出层节点个数
inputnum=size(input,2);
outputnum=size(output,2);
disp('/////////////////////////////////')
disp('神经网络结构...')
disp(['输入层的节点数为:',num2str(inputnum)])
disp(['输出层的节点数为:',num2str(outputnum)])
disp(' ')
disp('隐含层节点的确定过程...')
%确定隐含层节点个数
%采用经验公式hiddennum=sqrt(m+n)+a,m为输入层节点个数,n为输出层节点个数,a一般取为1-10之间的整数
MSE=1e+5; %初始化最小误差
for hiddennum=fix(sqrt(inputnum+outputnum))+1:fix(sqrt(inputnum+outputnum))+10
%构建网络
net=newff(inputn,outputn,hiddennum);
% 网络参数
net.trainParam.epochs=1000; % 训练次数
net.trainParam.lr=0.01; % 学习速率
net.trainParam.goal=0.000001; % 训练目标最小误差
% 网络训练
net=train(net,inputn,outputn);
an0=sim(net,inputn); %仿真结果
mse0=mse(outputn,an0); %仿真的均方误差
disp(['隐含层节点数为',num2str(hiddennum),'时,训练集的均方误差为:',num2str(mse0)])
%更新最佳的隐含层节点
if mse0<MSE
MSE=mse0;
hiddennum_best=hiddennum;
end
end
disp(['最佳的隐含层节点数为:',num2str(hiddennum_best),',相应的均方误差为:',num2str(MSE)])
%% 构建最佳隐含层节点的BP神经网络
disp(' ')
disp('标准的BP神经网络:')
net0=newff(inputn,outputn,hiddennum_best,{'tansig','purelin'},'trainlm');% 建立模型
%网络参数配置
net0.trainParam.epochs=1000; % 训练次数,这里设置为1000次
net0.trainParam.lr=0.01; % 学习速率,这里设置为0.01
net0.trainParam.goal=0.00001; % 训练目标最小误差,这里设置为0.0001
net0.trainParam.show=25; % 显示频率,这里设置为每训练25次显示一次
net0.trainParam.mc=0.01; % 动量因子
net0.trainParam.min_grad=1e-6; % 最小性能梯度
net0.trainParam.max_fail=6; % 最高失败次数
%开始训练
net0=train(net0,inputn,outputn);
%预测
an0=sim(net0,inputn_test); %用训练好的模型进行仿真
%预测结果反归一化与误差计算
test_simu0=mapminmax('reverse',an0,outputps); %把仿真得到的数据还原为原始的数量级
%误差指标
[mae0,mse0,rmse0,mape0,error0,errorPercent0]=calc_error(output_test,test_simu0);
%% 粒子群算法寻最优权值阈值
disp(' ')
disp('PSO优化BP神经网络:')
net=newff(inputn,outputn,hiddennum_best,{'tansig','purelin'},'trainlm');% 建立模型
%网络参数配置
net.trainParam.epochs=1000; % 训练次数,这里设置为1000次
net.trainParam.lr=0.01; % 学习速率,这里设置为0.01
net.trainParam.goal=0.00001; % 训练目标最小误差,这里设置为0.0001
net.trainParam.show=25; % 显示频率,这里设置为每训练25次显示一次
net.trainParam.mc=0.01; % 动量因子
net.trainParam.min_grad=1e-6; % 最小性能梯度
net.trainParam.max_fail=6; % 最高失败次数
%初始化PSO参数
popsize=10; %初始种群规模
maxgen=50; %最大进化代数
dim=inputnum*hiddennum_best+hiddennum_best+hiddennum_best*outputnum+outputnum; %自变量个数
lb=repmat(-3,1,dim); %自变量下限
ub=repmat(3,1,dim); %自变量上限
c1 = 2; % 每个粒子的个体学习因子,也称为个体加速常数
c2 = 2; % 每个粒子的社会学习因子,也称为社会加速常数
w = 0.9; % 惯性权重
vmax =3*ones(1,dim); % 粒子的最大速度
vmax=repmat(vmax,popsize,1);
%% 初始化粒子的位置和速度
x = zeros(popsize,dim);
for i = 1: dim
x(:,i) = lb(i) + (ub(i)-lb(i))*rand(popsize,1); % 随机初始化粒子所在的位置在定义域内
end
v = -vmax + 2*vmax .* rand(popsize,dim); % 随机初始化粒子的速度(设置为[-vmax,vmax])
%% 计算适应度
fit = zeros(popsize,1); % 初始化这n个粒子的适应度全为0
for i = 1:popsize % 循环整个粒子群,计算每一个粒子的适应度
fit(i) = fitness(x(i,:),inputnum,hiddennum_best,outputnum,net,inputn,outputn,output_train,inputn_test,outputps,output_test); % 调用函数来计算适应度
end
pbest = x; % 初始化这n个粒子迄今为止找到的最佳位置
ind = find(fit == min(fit), 1); % 找到适应度最小的那个粒子的下标
gbest = x(ind,:); % 定义所有粒子迄今为止找到的最佳位置
%% 开始进化
Convergence_curve = ones(maxgen,1); % 初始化每次迭代得到的最佳的适应度
h0 = waitbar(0,'进度','Name','PSO optimization...',...
'CreateCancelBtn','setappdata(gcbf,''canceling'',1)');
setappdata(h0,'canceling',0);
for d = 1:maxgen % 开始迭代,一共迭代K次
for i = 1:popsize % 依次更新第i个粒子的速度与位置
v(i,:) = w*v(i,:) + c1*rand(1)*(pbest(i,:) - x(i,:)) + c2*rand(1)*(gbest - x(i,:)); % 更新第i个粒子的速度
% 如果粒子的速度超过了最大速度限制,就对其进行调整
for j = 1: dim
if v(i,j) < -vmax(j)
v(i,j) = -vmax(j);
elseif v(i,j) > vmax(j)
v(i,j) = vmax(j);
end
end
x(i,:) = x(i,:) + v(i,:); % 更新第i个粒子的位置
% 如果粒子的位置超出了定义域,就对其进行调整
for j = 1: dim
if x(i,j) < lb(j)
x(i,j) = lb(j);
elseif x(i,j) > ub(j)
x(i,j) = ub(j);
end
end
%更新第i个粒子的适应度
fit(i) = fitness(x(i,:),inputnum,hiddennum_best,outputnum,net,inputn,outputn,output_train,inputn_test,outputps,output_test);
%更新当前最优粒子位置
if fit(i) < fitness(pbest(i,:),inputnum,hiddennum_best,outputnum,net,inputn,outputn,output_train,inputn_test,outputps,output_test) % 如果第i个粒子的适应度小于这个粒子迄今为止找到的最佳位置对应的适应度
pbest(i,:) = x(i,:); % 那就更新第i个粒子迄今为止找到的最佳位置
end
%更新历史最优粒子位置
if fitness(pbest(i,:),inputnum,hiddennum_best,outputnum,net,inputn,outputn,output_train,inputn_test,outputps,output_test) < fitness(gbest,inputnum,hiddennum_best,outputnum,net,inputn,outputn,output_train,inputn_test,outputps,output_test) % 如果第i个粒子的适应度小于所有的粒子迄今为止找到的最佳位置对应的适应度
gbest = pbest(i,:); % 那就更新所有粒子迄今为止找到的最佳位置
end
end
Convergence_curve(d) = fitness(gbest,inputnum,hiddennum_best,outputnum,net,inputn,outputn,output_train,inputn_test,outputps,output_test); % 更新第d次迭代得到的最佳的适应度
waitbar(d/maxgen,h0,[num2str(d/maxgen*100),'%'])
if getappdata(h0,'canceling')
break
end
end
delete(h0)
Best_pos =gbest;
Best_score = Convergence_curve(end);
setdemorandstream(pi);
%% 绘制进化曲线
figure
plot(Convergence_curve,'r-','linewidth',2)
xlabel('进化代数')
ylabel('均方误差')
legend('最佳适应度')
title('PSO的进化收敛曲线')
w1=Best_pos(1:inputnum*hiddennum_best); %输入层到中间层的权值
B1=Best_pos(inputnum*hiddennum_best+1:inputnum*hiddennum_best+hiddennum_best); %中间各层神经元阈值
w2=Best_pos(inputnum*hiddennum_best+hiddennum_best+1:inputnum*hiddennum_best+hiddennum_best+hiddennum_best*outputnum); %中间层到输出层的权值
B2=Best_pos(inputnum*hiddennum_best+hiddennum_best+hiddennum_best*outputnum+1:inputnum*hiddennum_best+hiddennum_best+hiddennum_best*outputnum+outputnum); %输出层各神经元阈值
%矩阵重构
net.iw{1,1}=reshape(w1,hiddennum_best,inputnum);
net.lw{2,1}=reshape(w2,outputnum,hid
CJ-leaf
- 粉丝: 5w+
- 资源: 67
- 1
- 2
- 3
- 4
- 5
- 6
前往页