# Multi-Object Tracking with Ultralytics YOLO
<img width="1024" src="https://user-images.githubusercontent.com/26833433/243418637-1d6250fd-1515-4c10-a844-a32818ae6d46.png">
Object tracking in the realm of video analytics is a critical task that not only identifies the location and class of objects within the frame but also maintains a unique ID for each detected object as the video progresses. The applications are limitless—ranging from surveillance and security to real-time sports analytics.
## Why Choose Ultralytics YOLO for Object Tracking?
The output from Ultralytics trackers is consistent with standard object detection but has the added value of object IDs. This makes it easy to track objects in video streams and perform subsequent analytics. Here's why you should consider using Ultralytics YOLO for your object tracking needs:
- **Efficiency:** Process video streams in real-time without compromising accuracy.
- **Flexibility:** Supports multiple tracking algorithms and configurations.
- **Ease of Use:** Simple Python API and CLI options for quick integration and deployment.
- **Customizability:** Easy to use with custom trained YOLO models, allowing integration into domain-specific applications.
**Video Tutorial:** [Object Detection and Tracking with Ultralytics YOLOv8](https://www.youtube.com/embed/hHyHmOtmEgs?si=VNZtXmm45Nb9s-N-).
## Features at a Glance
Ultralytics YOLO extends its object detection features to provide robust and versatile object tracking:
- **Real-Time Tracking:** Seamlessly track objects in high-frame-rate videos.
- **Multiple Tracker Support:** Choose from a variety of established tracking algorithms.
- **Customizable Tracker Configurations:** Tailor the tracking algorithm to meet specific requirements by adjusting various parameters.
## Available Trackers
Ultralytics YOLO supports the following tracking algorithms. They can be enabled by passing the relevant YAML configuration file such as `tracker=tracker_type.yaml`:
- [BoT-SORT](https://github.com/NirAharon/BoT-SORT) - Use `botsort.yaml` to enable this tracker.
- [ByteTrack](https://github.com/ifzhang/ByteTrack) - Use `bytetrack.yaml` to enable this tracker.
The default tracker is BoT-SORT.
## Tracking
To run the tracker on video streams, use a trained Detect, Segment or Pose model such as YOLOv8n, YOLOv8n-seg and YOLOv8n-pose.
#### Python
```python
from ultralytics import YOLO
# Load an official or custom model
model = YOLO("yolov8n.pt") # Load an official Detect model
model = YOLO("yolov8n-seg.pt") # Load an official Segment model
model = YOLO("yolov8n-pose.pt") # Load an official Pose model
model = YOLO("path/to/best.pt") # Load a custom trained model
# Perform tracking with the model
results = model.track(
source="https://youtu.be/LNwODJXcvt4", show=True
) # Tracking with default tracker
results = model.track(
source="https://youtu.be/LNwODJXcvt4", show=True, tracker="bytetrack.yaml"
) # Tracking with ByteTrack tracker
```
#### CLI
```bash
# Perform tracking with various models using the command line interface
yolo track model=yolov8n.pt source="https://youtu.be/LNwODJXcvt4" # Official Detect model
yolo track model=yolov8n-seg.pt source="https://youtu.be/LNwODJXcvt4" # Official Segment model
yolo track model=yolov8n-pose.pt source="https://youtu.be/LNwODJXcvt4" # Official Pose model
yolo track model=path/to/best.pt source="https://youtu.be/LNwODJXcvt4" # Custom trained model
# Track using ByteTrack tracker
yolo track model=path/to/best.pt tracker="bytetrack.yaml"
```
As can be seen in the above usage, tracking is available for all Detect, Segment and Pose models run on videos or streaming sources.
## Configuration
### Tracking Arguments
Tracking configuration shares properties with Predict mode, such as `conf`, `iou`, and `show`. For further configurations, refer to the [Predict](https://docs.ultralytics.com/modes/predict/) model page.
#### Python
```python
from ultralytics import YOLO
# Configure the tracking parameters and run the tracker
model = YOLO("yolov8n.pt")
results = model.track(
source="https://youtu.be/LNwODJXcvt4", conf=0.3, iou=0.5, show=True
)
```
#### CLI
```bash
# Configure tracking parameters and run the tracker using the command line interface
yolo track model=yolov8n.pt source="https://youtu.be/LNwODJXcvt4" conf=0.3, iou=0.5 show
```
### Tracker Selection
Ultralytics also allows you to use a modified tracker configuration file. To do this, simply make a copy of a tracker config file (for example, `custom_tracker.yaml`) from [ultralytics/cfg/trackers](https://github.com/ultralytics/ultralytics/tree/main/ultralytics/cfg/trackers) and modify any configurations (except the `tracker_type`) as per your needs.
#### Python
```python
from ultralytics import YOLO
# Load the model and run the tracker with a custom configuration file
model = YOLO("yolov8n.pt")
results = model.track(
source="https://youtu.be/LNwODJXcvt4", tracker="custom_tracker.yaml"
)
```
#### CLI
```bash
# Load the model and run the tracker with a custom configuration file using the command line interface
yolo track model=yolov8n.pt source="https://youtu.be/LNwODJXcvt4" tracker='custom_tracker.yaml'
```
For a comprehensive list of tracking arguments, refer to the [ultralytics/cfg/trackers](https://github.com/ultralytics/ultralytics/tree/main/ultralytics/cfg/trackers) page.
## Python Examples
### Persisting Tracks Loop
Here is a Python script using OpenCV (`cv2`) and YOLOv8 to run object tracking on video frames. This script still assumes you have already installed the necessary packages (`opencv-python` and `ultralytics`). The `persist=True` argument tells the tracker than the current image or frame is the next in a sequence and to expect tracks from the previous image in the current image.
#### Python
```python
import cv2
from ultralytics import YOLO
# Load the YOLOv8 model
model = YOLO("yolov8n.pt")
# Open the video file
video_path = "path/to/video.mp4"
cap = cv2.VideoCapture(video_path)
# Loop through the video frames
while cap.isOpened():
# Read a frame from the video
success, frame = cap.read()
if success:
# Run YOLOv8 tracking on the frame, persisting tracks between frames
results = model.track(frame, persist=True)
# Visualize the results on the frame
annotated_frame = results[0].plot()
# Display the annotated frame
cv2.imshow("YOLOv8 Tracking", annotated_frame)
# Break the loop if 'q' is pressed
if cv2.waitKey(1) & 0xFF == ord("q"):
break
else:
# Break the loop if the end of the video is reached
break
# Release the video capture object and close the display window
cap.release()
cv2.destroyAllWindows()
```
Please note the change from `model(frame)` to `model.track(frame)`, which enables object tracking instead of simple detection. This modified script will run the tracker on each frame of the video, visualize the results, and display them in a window. The loop can be exited by pressing 'q'.
### Plotting Tracks Over Time
Visualizing object tracks over consecutive frames can provide valuable insights into the movement patterns and behavior of detected objects within a video. With Ultralytics YOLOv8, plotting these tracks is a seamless and efficient process.
In the following example, we demonstrate how to utilize YOLOv8's tracking capabilities to plot the movement of detected objects across multiple video frames. This script involves opening a video file, reading it frame by frame, and utilizing the YOLO model to identify and track various objects. By retaining the center points of the detected bounding boxes and connecting them, we can draw lines that represent the paths followed by the tracked objects.
#### Python
```python
from collections import defaultdict
import cv2
import numpy as np
from ultralytics import YOLO
# Load the YOLOv8 model
model = YOLO("yolov8n.pt")
# Open the video file
v
没有合适的资源?快使用搜索试试~ 我知道了~
温馨提示
YOLOv8-AIFI-Integration 是一套基于Python的开源代码,专门设计用于在YOLOv8对象检测框架中集成AIFI(Attention-based Intrascale Feature Interaction)模块。这个改进是在原有的YOLOv8模型基础上进行的,目的是提升模型在处理尺度内特征交互时的性能,特别是在进行复杂场景和多样化对象检测的情况下。 主要特点 AIFI模块集成:引入了基于注意力机制的AIFI模块,有效提升尺度内特征之间的交互能力。 性能优化:通过AIFI模块的集成,相比传统的SPPF(Spatial Pyramid Pooling-Fast)模块,进一步提高了模型的检测精度和效率。 实时对象检测:保留了YOLO系列模型的实时检测能力,同时在处理速度和精度上有所提升。 灵活适应性:代码设计灵活,可根据不同的应用场景进行调整和优化。 易于集成:提供了易于理解和实施的代码结构,便于在现有的YOLOv8框架中进行集成和测试。 应用场景 适用于需要高效准确的实时对象检测的应用,如自动驾驶、视频监控、无人机航拍分析等。
资源推荐
资源详情
资源评论
收起资源包目录
YOLOv8中引入AIFI(Attention-based Intrascale Feature Interaction)源码 (412个子文件)
dcnv3_cpu.cpp 2KB
vision.cpp 699B
dcnv3_cuda.cu 8KB
dcnv3_im2col_cuda.cuh 52KB
dcnv3.h 3KB
dcnv3_cuda.h 2KB
dcnv3_cpu.h 2KB
bus.jpg 134KB
zidane.jpg 49KB
README.md 13KB
README.md 3KB
readme.md 566B
block.py 105KB
attention.py 58KB
exporter.py 49KB
metrics.py 48KB
augment.py 46KB
tasks.py 44KB
loss.py 34KB
__init__.py 33KB
trainer.py 32KB
orepa.py 32KB
plotting.py 31KB
ops.py 31KB
utils.py 29KB
tiny_encoder.py 28KB
autobackend.py 26KB
checks.py 25KB
encoders.py 24KB
torch_utils.py 24KB
EfficientFormerV2.py 24KB
predict.py 23KB
results.py 23KB
SwinTransformer.py 23KB
loaders.py 22KB
afpn.py 21KB
atss.py 20KB
model.py 19KB
__init__.py 19KB
head.py 18KB
efficientViT.py 18KB
benchmarks.py 18KB
byte_tracker.py 18KB
transformer.py 17KB
downloads.py 17KB
kernel_warehouse.py 17KB
predictor.py 16KB
prompt.py 16KB
dataset.py 16KB
loss.py 16KB
instance.py 16KB
head.py 15KB
repvit.py 15KB
CSwomTramsformer.py 15KB
CSwimTramsformer.py 15KB
dcnv3.py 15KB
kalman_filter.py 15KB
validator.py 14KB
comet.py 14KB
dynamic_snake_conv.py 13KB
tal.py 13KB
base.py 13KB
ops.py 13KB
VanillaNet.py 13KB
val.py 13KB
block.py 13KB
transformer.py 12KB
conv.py 12KB
converter.py 12KB
rep_block.py 12KB
gmc.py 12KB
val.py 12KB
fasternet.py 12KB
tuner.py 11KB
revcol.py 11KB
transformer.py 11KB
val.py 10KB
test.py 10KB
utils.py 9KB
dcnv3_func.py 8KB
bot_sort.py 8KB
session.py 8KB
convnextv2.py 8KB
amg.py 8KB
decoders.py 8KB
lsknet.py 7KB
wb.py 7KB
train.py 7KB
RFAConv.py 7KB
build.py 7KB
val.py 6KB
tuner.py 6KB
clearml.py 6KB
base.py 6KB
train.py 5KB
auth.py 5KB
files.py 5KB
dvc.py 5KB
val.py 5KB
build.py 5KB
共 412 条
- 1
- 2
- 3
- 4
- 5
资源评论
E寻数据
- 粉丝: 7815
- 资源: 40
上传资源 快速赚钱
- 我的内容管理 展开
- 我的资源 快来上传第一个资源
- 我的收益 登录查看自己的收益
- 我的积分 登录查看自己的积分
- 我的C币 登录后查看C币余额
- 我的收藏
- 我的下载
- 下载帮助
最新资源
- LCD1602电子时钟程序
- 西北太平洋热带气旋【灾害风险统计】及【登陆我国次数评估】数据集-1980-2023
- 全球干旱数据集【自校准帕尔默干旱程度指数scPDSI】-190101-202312-0.5x0.5
- 基于Python实现的VAE(变分自编码器)训练算法源代码+使用说明
- 全球干旱数据集【标准化降水蒸发指数SPEI-12】-190101-202312-0.5x0.5
- C语言小游戏-五子棋-详细代码可运行
- 全球干旱数据集【标准化降水蒸发指数SPEI-03】-190101-202312-0.5x0.5
- spring boot aop记录修改前后的值demo
- 全球干旱数据集【标准化降水蒸发指数SPEI-01】-190101-202312-0.5x0.5
- ActiveReports
资源上传下载、课程学习等过程中有任何疑问或建议,欢迎提出宝贵意见哦~我们会及时处理!
点击此处反馈
安全验证
文档复制为VIP权益,开通VIP直接复制
信息提交成功