<div align="center">
<p>
<a align="left" href="https://ultralytics.com/yolov5" target="_blank">
<img width="850" src="https://github.com/ultralytics/yolov5/releases/download/v1.0/splash.jpg"></a>
</p>
<br>
<div>
<a href="https://github.com/ultralytics/yolov5/actions"><img src="https://github.com/ultralytics/yolov5/workflows/CI%20CPU%20testing/badge.svg" alt="CI CPU testing"></a>
<a href="https://zenodo.org/badge/latestdoi/264818686"><img src="https://zenodo.org/badge/264818686.svg" alt="YOLOv5 Citation"></a>
<a href="https://hub.docker.com/r/ultralytics/yolov5"><img src="https://img.shields.io/docker/pulls/ultralytics/yolov5?logo=docker" alt="Docker Pulls"></a>
<br>
<a href="https://colab.research.google.com/github/ultralytics/yolov5/blob/master/tutorial.ipynb"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"></a>
<a href="https://www.kaggle.com/ultralytics/yolov5"><img src="https://kaggle.com/static/images/open-in-kaggle.svg" alt="Open In Kaggle"></a>
<a href="https://join.slack.com/t/ultralytics/shared_invite/zt-w29ei8bp-jczz7QYUmDtgo6r6KcMIAg"><img src="https://img.shields.io/badge/Slack-Join_Forum-blue.svg?logo=slack" alt="Join Forum"></a>
</div>
<br>
<div align="center">
<a href="https://github.com/ultralytics">
<img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-social-github.png" width="2%"/>
</a>
<img width="2%" />
<a href="https://www.linkedin.com/company/ultralytics">
<img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-social-linkedin.png" width="2%"/>
</a>
<img width="2%" />
<a href="https://twitter.com/ultralytics">
<img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-social-twitter.png" width="2%"/>
</a>
<img width="2%" />
<a href="https://youtube.com/ultralytics">
<img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-social-youtube.png" width="2%"/>
</a>
<img width="2%" />
<a href="https://www.facebook.com/ultralytics">
<img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-social-facebook.png" width="2%"/>
</a>
<img width="2%" />
<a href="https://www.instagram.com/ultralytics/">
<img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-social-instagram.png" width="2%"/>
</a>
</div>
<br>
<p>
YOLOv5 ð is a family of object detection architectures and models pretrained on the COCO dataset, and represents <a href="https://ultralytics.com">Ultralytics</a>
open-source research into future vision AI methods, incorporating lessons learned and best practices evolved over thousands of hours of research and development.
</p>
<!--
<a align="center" href="https://ultralytics.com/yolov5" target="_blank">
<img width="800" src="https://github.com/ultralytics/yolov5/releases/download/v1.0/banner-api.png"></a>
-->
</div>
## <div align="center">Documentation</div>
See the [YOLOv5 Docs](https://docs.ultralytics.com) for full documentation on training, testing and deployment.
## <div align="center">Quick Start Examples</div>
<details open>
<summary>Install</summary>
[**Python>=3.6.0**](https://www.python.org/) is required with all
[requirements.txt](https://github.com/ultralytics/yolov5/blob/master/requirements.txt) installed including
[**PyTorch>=1.7**](https://pytorch.org/get-started/locally/):
<!-- $ sudo apt update && apt install -y libgl1-mesa-glx libsm6 libxext6 libxrender-dev -->
```bash
$ git clone https://github.com/ultralytics/yolov5
$ cd yolov5
$ pip install -r requirements.txt
```
</details>
<details open>
<summary>Inference</summary>
Inference with YOLOv5 and [PyTorch Hub](https://github.com/ultralytics/yolov5/issues/36). Models automatically download
from the [latest YOLOv5 release](https://github.com/ultralytics/yolov5/releases).
```python
import torch
# Model
model = torch.hub.load('ultralytics/yolov5', 'yolov5s') # or yolov5m, yolov5l, yolov5x, custom
# Images
img = 'https://ultralytics.com/images/zidane.jpg' # or file, Path, PIL, OpenCV, numpy, list
# Inference
results = model(img)
# Results
results.print() # or .show(), .save(), .crop(), .pandas(), etc.
```
</details>
<details>
<summary>Inference with detect.py</summary>
`detect.py` runs inference on a variety of sources, downloading models automatically from
the [latest YOLOv5 release](https://github.com/ultralytics/yolov5/releases) and saving results to `runs/detect`.
```bash
$ python detect.py --source 0 # webcam
file.jpg # image
file.mp4 # video
path/ # directory
path/*.jpg # glob
'https://youtu.be/NUsoVlDFqZg' # YouTube
'rtsp://example.com/media.mp4' # RTSP, RTMP, HTTP stream
```
</details>
<details>
<summary>Training</summary>
Run commands below to reproduce results
on [COCO](https://github.com/ultralytics/yolov5/blob/master/data/scripts/get_coco.sh) dataset (dataset auto-downloads on
first use). Training times for YOLOv5s/m/l/x are 2/4/6/8 days on a single V100 (multi-GPU times faster). Use the
largest `--batch-size` your GPU allows (batch sizes shown for 16 GB devices).
```bash
$ python train.py --data coco.yaml --cfg yolov5s.yaml --weights '' --batch-size 64
yolov5m 40
yolov5l 24
yolov5x 16
```
<img width="800" src="https://user-images.githubusercontent.com/26833433/90222759-949d8800-ddc1-11ea-9fa1-1c97eed2b963.png">
</details>
<details open>
<summary>Tutorials</summary>
* [Train Custom Data](https://github.com/ultralytics/yolov5/wiki/Train-Custom-Data) ð RECOMMENDED
* [Tips for Best Training Results](https://github.com/ultralytics/yolov5/wiki/Tips-for-Best-Training-Results) âï¸
RECOMMENDED
* [Weights & Biases Logging](https://github.com/ultralytics/yolov5/issues/1289) ð NEW
* [Roboflow for Datasets, Labeling, and Active Learning](https://github.com/ultralytics/yolov5/issues/4975) ð NEW
* [Multi-GPU Training](https://github.com/ultralytics/yolov5/issues/475)
* [PyTorch Hub](https://github.com/ultralytics/yolov5/issues/36) â NEW
* [TorchScript, ONNX, CoreML Export](https://github.com/ultralytics/yolov5/issues/251) ð
* [Test-Time Augmentation (TTA)](https://github.com/ultralytics/yolov5/issues/303)
* [Model Ensembling](https://github.com/ultralytics/yolov5/issues/318)
* [Model Pruning/Sparsity](https://github.com/ultralytics/yolov5/issues/304)
* [Hyperparameter Evolution](https://github.com/ultralytics/yolov5/issues/607)
* [Transfer Learning with Frozen Layers](https://github.com/ultralytics/yolov5/issues/1314) â NEW
* [TensorRT Deployment](https://github.com/wang-xinyu/tensorrtx)
</details>
## <div align="center">Environments</div>
Get started in seconds with our verified environments. Click each icon below for details.
<div align="center">
<a href="https://colab.research.google.com/github/ultralytics/yolov5/blob/master/tutorial.ipynb">
<img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-colab-small.png" width="15%"/>
</a>
<a href="https://www.kaggle.com/ultralytics/yolov5">
<img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-kaggle-small.png" width="15%"/>
</a>
<a href="https://hub.docker.com/r/ultralytics/yolov5">
<img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-docker-small.png" width="15%"/>
</a>
<a href="https://github.com/ultralytics/yolov5/wiki/AWS-Quickstart">
<img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-aws-small.png" width="15%"/>
</a>
<a href="https:/
没有合适的资源?快使用搜索试试~ 我知道了~
温馨提示
下载后解压源码,pip install -r requirement.txt,安装所需python依赖,然后直接python detect.py运行程序,输入源可以设定为webcam、图片、视频、文件夹、网络视频、rtsp视频流等,权重文件使用yolov5s.pt效果最好。代码在windows和ubuntu18.04下都进行了充分测试,完美运行。
资源推荐
资源详情
资源评论
收起资源包目录
yolov5-6.0.zip (99个子文件)
yolov5-6.0
models
common.py 20KB
yolov5n.yaml 1KB
yolo.py 14KB
hub
yolov5s-transformer.yaml 1KB
yolov5m6.yaml 2KB
yolov5-bifpn.yaml 1KB
yolov5s-ghost.yaml 1KB
yolov5x6.yaml 2KB
yolov3-tiny.yaml 1KB
yolov5-p6.yaml 2KB
yolov3-spp.yaml 2KB
yolov3.yaml 2KB
yolov5-p7.yaml 2KB
anchors.yaml 3KB
yolov5s6.yaml 2KB
yolov5n6.yaml 2KB
yolov5l6.yaml 2KB
yolov5-fpn.yaml 1KB
yolov5-panet.yaml 1KB
yolov5-p2.yaml 2KB
yolov5s.yaml 1KB
tf.py 20KB
__init__.py 0B
yolov5x.yaml 1KB
yolov5l.yaml 1KB
yolov5m.yaml 1KB
experimental.py 4KB
tutorial.ipynb 48KB
data
GlobalWheat2020.yaml 2KB
coco.yaml 2KB
images
bus.jpg 476KB
zidane.jpg 165KB
hyps
hyp.scratch.yaml 2KB
hyp.scratch-low.yaml 2KB
hyp.finetune.yaml 907B
hyp.finetune_objects365.yaml 460B
hyp.scratch-high.yaml 2KB
VOC.yaml 3KB
VisDrone.yaml 3KB
xView.yaml 5KB
Argoverse.yaml 3KB
coco128.yaml 2KB
SKU-110K.yaml 2KB
Objects365.yaml 7KB
scripts
get_coco.sh 900B
get_coco128.sh 615B
download_weights.sh 443B
.github
dependabot.yml 225B
FUNDING.yml 118B
ISSUE_TEMPLATE
feature-request.md 739B
bug-report.md 1KB
question.md 139B
workflows
rebase.yml 542B
greetings.yml 5KB
codeql-analysis.yml 2KB
ci-testing.yml 3KB
stale.yml 2KB
train.py 31KB
Dockerfile 2KB
LICENSE 34KB
CONTRIBUTING.md 5KB
detect.py 15KB
requirements.txt 892B
val.py 17KB
.gitignore 4KB
export.py 16KB
.dockerignore 4KB
README.md 14KB
utils
loggers
__init__.py 6KB
wandb
sweep.py 989B
log_dataset.py 891B
sweep.yaml 2KB
__init__.py 0B
wandb_utils.py 25KB
README.md 10KB
loss.py 9KB
plots.py 19KB
flask_rest_api
example_request.py 299B
restapi.py 1KB
README.md 2KB
downloads.py 6KB
augmentations.py 11KB
callbacks.py 2KB
metrics.py 13KB
general.py 33KB
datasets.py 43KB
activations.py 4KB
autoanchor.py 7KB
torch_utils.py 14KB
aws
userdata.sh 1KB
resume.py 1KB
mime.sh 780B
__init__.py 0B
__init__.py 0B
google_app_engine
additional_requirements.txt 105B
Dockerfile 821B
app.yaml 173B
hubconf.py 6KB
.gitattributes 75B
共 99 条
- 1
资源评论
- WJGroup2022-10-06简直是宝藏资源,实用价值很高,支持!
- 道法自然之王四分之一仙2023-01-18资源内容详尽,对我有使用价值,谢谢资源主的分享。
- 潘小白白2023-10-27感谢大佬,让我及时解决了当下的问题,解燃眉之急,必须支持!
- Dachau_2022-12-21怎么能有这么好的资源!只能用感激涕零来形容TAT...
振华OPPO
- 粉丝: 38w+
- 资源: 571
上传资源 快速赚钱
- 我的内容管理 展开
- 我的资源 快来上传第一个资源
- 我的收益 登录查看自己的收益
- 我的积分 登录查看自己的积分
- 我的C币 登录后查看C币余额
- 我的收藏
- 我的下载
- 下载帮助
最新资源
资源上传下载、课程学习等过程中有任何疑问或建议,欢迎提出宝贵意见哦~我们会及时处理!
点击此处反馈
安全验证
文档复制为VIP权益,开通VIP直接复制
信息提交成功