<p align="center">
<img src="https://github.com/jina-ai/jina/blob/master/.github/logo-only.gif?raw=true" alt="Jina banner" width="200px">
</p>
<p align="center">
<b>Cloud-Native <ins>Neural Search</ins><sup><a href=".github/2.0/neural-search.md">[?]</a></sup> Framework for <i>Any</i> Kind of Data</b>
</p>
<p align=center>
<a href="https://pypi.org/project/jina/"><img src="https://github.com/jina-ai/jina/blob/master/.github/badges/python-badge.svg?raw=true" alt="Python 3.7 3.8 3.9" title="Jina supports Python 3.7 and above"></a>
<a href="https://hub.docker.com/r/jinaai/jina/tags"><img src="https://img.shields.io/docker/v/jinaai/jina?color=%23099cec&label=Docker&logo=docker&logoColor=white&sort=semver" alt="Docker Image Version (latest semver)"></a>
<a href="https://pepy.tech/project/jina"><img src="https://pepy.tech/badge/jina/month"></a>
<a href="https://codecov.io/gh/jina-ai/jina"><img src="https://codecov.io/gh/jina-ai/jina/branch/master/graph/badge.svg" alt="codecov"></a>
<a href="https://slack.jina.ai"><img src="https://img.shields.io/badge/Slack-600%2B-blueviolet?logo=slack&logoColor=white"></a>
</p>
<!-- start elevator-pitch -->
Jina<sup><a href=".github/pronounce-jina.mp3">`ð`</a></sup> allows you to build deep learning-powered search-as-a-service in just minutes.
<!-- end elevator-pitch -->
ð **All data type** - Large-scale indexing and querying of any kind of unstructured data: video, image, long/short text, music, source code, PDF, etc.
ð©ï¸ **Fast & cloud-native** - Distributed architecture from day one. Scalable & cloud-native by design: enjoy
containerizing, distributing, streaming, paralleling, sharding, async scheduling with REST/gRPC/WebSocket.
â±ï¸ **Save time** - *The* design pattern of neural search systems, from zero to a production-ready system in minutes.
ð± **Own your stack** - Keep an end-to-end stack ownership of your solution, avoid integration pitfalls with
fragmented, multi-vendor, generic legacy tools.
## Run Quick Demo
- [ð Fashion image search](./.github/pages/hello-world.md#-fashion-image-search): `pip install --pre && jina hello fashion`
- [ð¤ QA chatbot](./.github/pages/hello-world.md#-covid-19-chatbot): `pip install --pre "jina[chatbot]" && jina hello chatbot`
- [ð° Multimodal search](./.github/pages/hello-world.md#-multimodal-document-search): `pip install --pre "jina[multimodal]" && jina hello multimodal`
- ð´ Fork the source of a demo to your folder: `jina hello fork fashion ../my-proj/`
## Install
2.0 is in pre-release, **add `--pre`** to install it.
```console
$ pip install --pre jina
$ jina -v
2.0.0rcN
```
#### via Docker
```console
$ docker run jinaai/jina:master -v
2.0.0rcN
```
<details>
<summary>ð¦ More installation options</summary>
| <br><sub><sup>x86/64,arm64,v6,v7,Apple M1</sup></sub> | On Linux/macOS & Python 3.7/3.8/3.9 | Docker Users|
| --- | --- | --- |
| Standard | `pip install --pre jina` | `docker run jinaai/jina:master` |
| <sub><a href="https://api.jina.ai/daemon/">Daemon</a></sub> | <sub>`pip install --pre "jina[daemon]"`</sub> | <sub>`docker run --network=host jinaai/jina:master-daemon`</sub> |
| <sub>With Extras</sub> | <sub>`pip install --pre "jina[devel]"`</sub> | <sub>`docker run jinaai/jina:master-devel`</sub> |
Version identifiers [are explained here](https://github.com/jina-ai/jina/blob/master/RELEASE.md). Jina can run
on [Windows Subsystem for Linux](https://docs.microsoft.com/en-us/windows/wsl/install-win10). We welcome the community
to help us with [native Windows support](https://github.com/jina-ai/jina/issues/1252).
</details>
## Get Started
Document, Executor, and Flow are the three fundamental concepts in Jina.
- [ð **Document**](.github/2.0/cookbooks/Document.md) is the basic data type in Jina;
- [âï¸ **Executor**](.github/2.0/cookbooks/Executor.md) is how Jina processes Documents;
- [ð **Flow**](.github/2.0/cookbooks/Flow.md) is how Jina streamlines and distributes Executors.
<a href="https://colab.research.google.com/github/jina-ai/jupyter-notebooks/blob/main/2.0-readme-38l.ipynb"><img align="right" src="https://colab.research.google.com/assets/colab-badge.svg?raw=true"/></a>
Copy-paste the minimum example below and run it:
<sup>ð¡ Preliminaries: <a href="https://en.wikipedia.org/wiki/Word_embedding">character embedding</a>, <a href="https://computersciencewiki.org/index.php/Max-pooling_/_Pooling">pooling</a>, <a href="https://en.wikipedia.org/wiki/Euclidean_distance">Euclidean distance</a></sup>
<img src="https://github.com/jina-ai/jina/blob/master/.github/2.0/simple-arch.svg" alt="Get started system diagram">
```python
import numpy as np
from jina import Document, DocumentArray, Executor, Flow, requests
class CharEmbed(Executor): # a simple character embedding with mean-pooling
offset = 32 # letter `a`
dim = 127 - offset + 1 # last pos reserved for `UNK`
char_embd = np.eye(dim) * 1 # one-hot embedding for all chars
@requests
def foo(self, docs: DocumentArray, **kwargs):
for d in docs:
r_emb = [ord(c) - self.offset if self.offset <= ord(c) <= 127 else (self.dim - 1) for c in d.text]
d.embedding = self.char_embd[r_emb, :].mean(axis=0) # average pooling
class Indexer(Executor):
_docs = DocumentArray() # for storing all documents in memory
@requests(on='/index')
def foo(self, docs: DocumentArray, **kwargs):
self._docs.extend(docs) # extend stored `docs`
@requests(on='/search')
def bar(self, docs: DocumentArray, **kwargs):
q = np.stack(docs.get_attributes('embedding')) # get all embeddings from query docs
d = np.stack(self._docs.get_attributes('embedding')) # get all embeddings from stored docs
euclidean_dist = np.linalg.norm(q[:, None, :] - d[None, :, :], axis=-1) # pairwise euclidean distance
for dist, query in zip(euclidean_dist, docs): # add & sort match
query.matches = [Document(self._docs[int(idx)], copy=True, scores={'euclid': d}) for idx, d in enumerate(dist)]
query.matches.sort(key=lambda m: m.scores['euclid'].value) # sort matches by their values
f = Flow(port_expose=12345).add(uses=CharEmbed, parallel=2).add(uses=Indexer) # build a Flow, with 2 parallel CharEmbed, tho unnecessary
with f:
f.post('/index', (Document(text=t.strip()) for t in open(__file__) if t.strip())) # index all lines of this file
f.block() # block for listening request
```
Keep the above running and start a simple client:
```python
from jina import Client, Document
from jina.types.request import Response
def print_matches(resp: Response): # the callback function invoked when task is done
for idx, d in enumerate(resp.docs[0].matches[:3]): # print top-3 matches
print(f'[{idx}]{d.scores["euclid"].value:2f}: "{d.text}"')
c = Client(host='localhost', port_expose=12345) # connect to localhost:12345
c.post('/search', Document(text='request(on=something)'), on_done=print_matches)
```
It finds the lines most similar to "`request(on=something)`" from the server code snippet and prints the following:
```text
Client@1608[S]:connected to the gateway at localhost:12345!
[0]0.168526: "@requests(on='/index')"
[1]0.181676: "@requests(on='/search')"
[2]0.192049: "query.matches = [Document(self._docs[int(idx)], copy=True, score=d) for idx, d in enumerate(dist)]"
```
<sup>ð Doesn't work? Our bad! <a href="https://github.com/jina-ai/jina/issues/new?assignees=&labels=kind%2Fbug&template=---found-a-bug-and-i-solved-it.md&title=">Please report it here.</a></sup>
## Read Tutorials
- ð§ [What is "Neural Search"?](.github/2.0/neural-search.md)
- ð `Document` & `DocumentArray`: the basic data type in Jina.
- [Minimum Working Example](.github/2.0/cookbooks/Document.md#minimum-working-example)
- [`Document` API](.github/2.0/cookbooks/Document.md#document-api)
- [`DocumentArray` API](.github/2.0/cookbooks/Document.md#documentar
没有合适的资源?快使用搜索试试~ 我知道了~
温馨提示
资源分类:Python库 所属语言:Python 资源全名:jina-2.0.0rc11.dev4.tar.gz 资源来源:官方 安装方法:https://lanzao.blog.csdn.net/article/details/101784059
资源推荐
资源详情
资源评论
收起资源包目录
Python库 | jina-2.0.0rc11.dev4.tar.gz (232个子文件)
jina.bash 533B
setup.cfg 38B
fluent.conf 2KB
style.css 10KB
default.Dockerfile 352B
devel.Dockerfile 298B
.dockerignore 138B
jina.fish 663B
Python.gitignore 2KB
demo.html 9KB
index.html 7KB
index.html 2KB
MANIFEST.in 197B
script.js 3KB
ci-vendors.json 4KB
jina.logo 4KB
README.md 23KB
not-zip-safe 1B
PKG-INFO 29KB
PKG-INFO 29KB
jina_pb2.py 78KB
base.py 64KB
__init__.py 48KB
helper.py 34KB
__init__.py 29KB
__init__.py 23KB
__init__.py 19KB
__init__.py 18KB
graph.py 17KB
zed.py 17KB
my_executors.py 16KB
document.py 15KB
dockerize.py 14KB
__init__.py 13KB
client.py 12KB
enums.py 12KB
models.py 11KB
__init__.py 10KB
hubio.py 9KB
__init__.py 9KB
autocomplete.py 9KB
files.py 9KB
memmap.py 9KB
helper.py 9KB
compound.py 8KB
parameters.py 8KB
tasks.py 8KB
profile.py 8KB
dependencies.py 7KB
__init__.py 7KB
helper.py 7KB
generators.py 7KB
table.py 7KB
__init__.py 7KB
helloworld.py 7KB
logger.py 7KB
multimodal.py 7KB
__init__.py 7KB
workspaces.py 6KB
__init__.py 6KB
app.py 6KB
setup.py 6KB
containers.py 6KB
helper.py 6KB
importer.py 6KB
mixin.py 5KB
zed.py 5KB
logs.py 5KB
flow_runner.py 5KB
base.py 5KB
my_executors.py 5KB
base.py 5KB
__init__.py 5KB
__init__.py 5KB
__init__.py 5KB
websocket.py 5KB
discovery.py 5KB
helper.py 5KB
partial.py 5KB
my_executors.py 5KB
legacy.py 4KB
__init__.py 4KB
generic.py 4KB
http.py 4KB
v1.py 4KB
converters.py 4KB
fastentrypoints.py 4KB
decorators.py 4KB
remote.py 4KB
api.py 4KB
prefetch.py 4KB
traversable.py 4KB
grpc.py 4KB
app.py 3KB
app.py 3KB
formatter.py 3KB
map.py 3KB
__init__.py 3KB
numpy.py 3KB
helper.py 3KB
共 232 条
- 1
- 2
- 3
资源评论
挣扎的蓝藻
- 粉丝: 14w+
- 资源: 15万+
上传资源 快速赚钱
- 我的内容管理 展开
- 我的资源 快来上传第一个资源
- 我的收益 登录查看自己的收益
- 我的积分 登录查看自己的积分
- 我的C币 登录后查看C币余额
- 我的收藏
- 我的下载
- 下载帮助
最新资源
- fish-kong,Yolov5-Instance-Seg-Tensorrt-CPP.zip
- 排球场地的排球识别 yolov7标记
- 微信小程序毕业设计-基于SSM的英语学习激励系统【代码+论文+PPT】.zip
- DOTA 中的 YOLOX 损失了 KLD (定向物体检测)(Rotated BBox)基于YOLOX的旋转目标检测.zip
- caffe-yolo-9000.zip
- 11sadsadfasfsafasf
- Android 凭证交换和更新协议 - “你只需登录一次”.zip
- 2024 年 ICONIP 展会.zip
- 微信小程序毕业设计-基于SSM的电影交流小程序【代码+论文+PPT】.zip
- 微信小程序毕业设计-基于SSM的食堂线上预约点餐小程序【代码+论文+PPT】.zip
资源上传下载、课程学习等过程中有任何疑问或建议,欢迎提出宝贵意见哦~我们会及时处理!
点击此处反馈
安全验证
文档复制为VIP权益,开通VIP直接复制
信息提交成功