---
title: LeNet MNIST Tutorial
description: Train and test "LeNet" on the MNIST handwritten digit data.
category: example
include_in_docs: true
priority: 1
---
# Training LeNet on MNIST with Caffe
We will assume that you have Caffe successfully compiled. If not, please refer to the [Installation page](/installation.html). In this tutorial, we will assume that your Caffe installation is located at `CAFFE_ROOT`.
## Prepare Datasets
You will first need to download and convert the data format from the MNIST website. To do this, simply run the following commands:
cd $CAFFE_ROOT
./data/mnist/get_mnist.sh
./examples/mnist/create_mnist.sh
If it complains that `wget` or `gunzip` are not installed, you need to install them respectively. After running the script there should be two datasets, `mnist_train_lmdb`, and `mnist_test_lmdb`.
## LeNet: the MNIST Classification Model
Before we actually run the training program, let's explain what will happen. We will use the [LeNet](http://yann.lecun.com/exdb/publis/pdf/lecun-01a.pdf) network, which is known to work well on digit classification tasks. We will use a slightly different version from the original LeNet implementation, replacing the sigmoid activations with Rectified Linear Unit (ReLU) activations for the neurons.
The design of LeNet contains the essence of CNNs that are still used in larger models such as the ones in ImageNet. In general, it consists of a convolutional layer followed by a pooling layer, another convolution layer followed by a pooling layer, and then two fully connected layers similar to the conventional multilayer perceptrons. We have defined the layers in `$CAFFE_ROOT/examples/mnist/lenet_train_test.prototxt`.
## Define the MNIST Network
This section explains the `lenet_train_test.prototxt` model definition that specifies the LeNet model for MNIST handwritten digit classification. We assume that you are familiar with [Google Protobuf](https://developers.google.com/protocol-buffers/docs/overview), and assume that you have read the protobuf definitions used by Caffe, which can be found at `$CAFFE_ROOT/src/caffe/proto/caffe.proto`.
Specifically, we will write a `caffe::NetParameter` (or in python, `caffe.proto.caffe_pb2.NetParameter`) protobuf. We will start by giving the network a name:
name: "LeNet"
### Writing the Data Layer
Currently, we will read the MNIST data from the lmdb we created earlier in the demo. This is defined by a data layer:
layer {
name: "mnist"
type: "Data"
transform_param {
scale: 0.00390625
}
data_param {
source: "mnist_train_lmdb"
backend: LMDB
batch_size: 64
}
top: "data"
top: "label"
}
Specifically, this layer has name `mnist`, type `data`, and it reads the data from the given lmdb source. We will use a batch size of 64, and scale the incoming pixels so that they are in the range \[0,1\). Why 0.00390625? It is 1 divided by 256. And finally, this layer produces two blobs, one is the `data` blob, and one is the `label` blob.
### Writing the Convolution Layer
Let's define the first convolution layer:
layer {
name: "conv1"
type: "Convolution"
param { lr_mult: 1 }
param { lr_mult: 2 }
convolution_param {
num_output: 20
kernel_size: 5
stride: 1
weight_filler {
type: "xavier"
}
bias_filler {
type: "constant"
}
}
bottom: "data"
top: "conv1"
}
This layer takes the `data` blob (it is provided by the data layer), and produces the `conv1` layer. It produces outputs of 20 channels, with the convolutional kernel size 5 and carried out with stride 1.
The fillers allow us to randomly initialize the value of the weights and bias. For the weight filler, we will use the `xavier` algorithm that automatically determines the scale of initialization based on the number of input and output neurons. For the bias filler, we will simply initialize it as constant, with the default filling value 0.
`lr_mult`s are the learning rate adjustments for the layer's learnable parameters. In this case, we will set the weight learning rate to be the same as the learning rate given by the solver during runtime, and the bias learning rate to be twice as large as that - this usually leads to better convergence rates.
### Writing the Pooling Layer
Phew. Pooling layers are actually much easier to define:
layer {
name: "pool1"
type: "Pooling"
pooling_param {
kernel_size: 2
stride: 2
pool: MAX
}
bottom: "conv1"
top: "pool1"
}
This says we will perform max pooling with a pool kernel size 2 and a stride of 2 (so no overlapping between neighboring pooling regions).
Similarly, you can write up the second convolution and pooling layers. Check `$CAFFE_ROOT/examples/mnist/lenet_train_test.prototxt` for details.
### Writing the Fully Connected Layer
Writing a fully connected layer is also simple:
layer {
name: "ip1"
type: "InnerProduct"
param { lr_mult: 1 }
param { lr_mult: 2 }
inner_product_param {
num_output: 500
weight_filler {
type: "xavier"
}
bias_filler {
type: "constant"
}
}
bottom: "pool2"
top: "ip1"
}
This defines a fully connected layer (known in Caffe as an `InnerProduct` layer) with 500 outputs. All other lines look familiar, right?
### Writing the ReLU Layer
A ReLU Layer is also simple:
layer {
name: "relu1"
type: "ReLU"
bottom: "ip1"
top: "ip1"
}
Since ReLU is an element-wise operation, we can do *in-place* operations to save some memory. This is achieved by simply giving the same name to the bottom and top blobs. Of course, do NOT use duplicated blob names for other layer types!
After the ReLU layer, we will write another innerproduct layer:
layer {
name: "ip2"
type: "InnerProduct"
param { lr_mult: 1 }
param { lr_mult: 2 }
inner_product_param {
num_output: 10
weight_filler {
type: "xavier"
}
bias_filler {
type: "constant"
}
}
bottom: "ip1"
top: "ip2"
}
### Writing the Loss Layer
Finally, we will write the loss!
layer {
name: "loss"
type: "SoftmaxWithLoss"
bottom: "ip2"
bottom: "label"
}
The `softmax_loss` layer implements both the softmax and the multinomial logistic loss (that saves time and improves numerical stability). It takes two blobs, the first one being the prediction and the second one being the `label` provided by the data layer (remember it?). It does not produce any outputs - all it does is to compute the loss function value, report it when backpropagation starts, and initiates the gradient with respect to `ip2`. This is where all magic starts.
### Additional Notes: Writing Layer Rules
Layer definitions can include rules for whether and when they are included in the network definition, like the one below:
layer {
// ...layer definition...
include: { phase: TRAIN }
}
This is a rule, which controls layer inclusion in the network, based on current network's state.
You can refer to `$CAFFE_ROOT/src/caffe/proto/caffe.proto` for more information about layer rules and model schema.
In the above example, this layer will be included only in `TRAIN` phase.
If we change `TRAIN` with `TEST`, then this layer will be used only in test phase.
By default, that is without layer rules, a layer is always included in the network.
Thus, `lenet_train_test.prototxt` has two `DATA` layers defined (with different `batch_size`), one for the training phase and one for the testing phase.
Also, there is an `Accuracy` layer which is included only in `TEST` phase for reporting the model accuracy every 100 iteration, as defined in `lenet_solver.prototxt`.
## Define t
没有合适的资源?快使用搜索试试~ 我知道了~
caffe-yolo-9000.zip
共2000个文件
jpg:1384个
cpp:195个
hpp:108个
1.该资源内容由用户上传,如若侵权请联系客服进行举报
2.虚拟产品一经售出概不退款(资源遇到问题,请及时私信上传者)
2.虚拟产品一经售出概不退款(资源遇到问题,请及时私信上传者)
版权申诉
0 下载量 136 浏览量
2024-11-26
18:02:06
上传
评论
收藏 368.41MB ZIP 举报
温馨提示
YOLO-9000 的 CAFFE参考YOLO9000更好、更快、更强https://arxiv.org/abs/1612.08242https://pjreddie.com/darknet/yolo/https://github.com/yeahkun/caffe-yolo用法数据准备 ln -s /your/path/to/VOCdevkit/ . python data/yolo/get_list.py cd data/yolo # change related path in script convert.sh ./convert.sh 火车 cd examples/yolo # change related path in script train.sh and darknet.prototxt ./train.sh测试重量https://drive.google.com/open?id=0Bx1yEotM0mQeM3ZPRmhFSHAydUE二进制协议https://drive.google.com
资源推荐
资源详情
资源评论
收起资源包目录
caffe-yolo-9000.zip (2000个子文件)
gtest_main.cc 2KB
Utils.cmake 13KB
Cuda.cmake 11KB
Summary.cmake 7KB
Targets.cmake 7KB
FindLAPACK.cmake 7KB
Dependencies.cmake 6KB
ConfigGen.cmake 4KB
ProtoBuf.cmake 4KB
FindMKL.cmake 3KB
FindNumPy.cmake 2KB
gflags.cmake 2KB
glog.cmake 2KB
Misc.cmake 2KB
FindMatlabMex.cmake 2KB
FindLevelDB.cmake 2KB
FindAtlas.cmake 2KB
FindOpenBLAS.cmake 2KB
FindGFlags.cmake 2KB
lint.cmake 1KB
FindGlog.cmake 1KB
FindvecLib.cmake 1KB
FindLMDB.cmake 1KB
FindSnappy.cmake 1KB
gtest-all.cpp 329KB
test_net.cpp 79KB
test_upgrade_proto.cpp 71KB
test_pooling_layer.cpp 50KB
test_gradient_based_solver.cpp 44KB
test_convolution_layer.cpp 43KB
upgrade_proto.cpp 41KB
net.cpp 39KB
test_neuron_layer.cpp 34KB
test_split_layer.cpp 25KB
data_transformer.cpp 22KB
test_scale_layer.cpp 21KB
caffe_.cpp 21KB
test_bias_layer.cpp 19KB
solver.cpp 17KB
test_random_number_generator.cpp 17KB
window_data_layer.cpp 17KB
test_lrn_layer.cpp 17KB
_caffe.cpp 16KB
base_conv_layer.cpp 16KB
test_inner_product_layer.cpp 15KB
test_data_layer.cpp 15KB
caffe.cpp 15KB
yolo_v2_loss_layer.cpp 14KB
blob.cpp 14KB
test_io.cpp 13KB
sgd_solver.cpp 13KB
parallel.cpp 13KB
io.cpp 12KB
test_deconvolution_layer.cpp 12KB
test_accuracy_layer.cpp 11KB
pooling_layer.cpp 11KB
recurrent_layer.cpp 11KB
test_memory_data_layer.cpp 11KB
test_data_transformer.cpp 11KB
lrn_layer.cpp 11KB
test_lstm_layer.cpp 10KB
common.cpp 10KB
test_crop_layer.cpp 10KB
test_argmax_layer.cpp 10KB
math_functions.cpp 10KB
cudnn_conv_layer.cpp 10KB
batch_norm_layer.cpp 10KB
test_reshape_layer.cpp 10KB
test_detection.cpp 10KB
test_blob.cpp 9KB
test_reduction_layer.cpp 9KB
im2col.cpp 9KB
scale_layer.cpp 9KB
eval_detection_layer.cpp 9KB
detection_loss_layer.cpp 9KB
layer_factory.cpp 9KB
lstm_layer.cpp 9KB
classification.cpp 8KB
rnn_layer.cpp 8KB
im2col_layer.cpp 8KB
test_image_data_layer.cpp 8KB
netforward.cpp 8KB
test_slice_layer.cpp 8KB
test_eltwise_layer.cpp 8KB
spp_layer.cpp 8KB
test_rnn_layer.cpp 8KB
test_concat_layer.cpp 8KB
test_dummy_data_layer.cpp 7KB
test_filler.cpp 7KB
test_embed_layer.cpp 7KB
image_data_layer.cpp 7KB
test_math_functions.cpp 6KB
box_data_layer.cpp 6KB
extract_features.cpp 6KB
hdf5.cpp 6KB
test_im2col_layer.cpp 6KB
test_stochastic_pooling.cpp 6KB
softmax_loss_layer.cpp 6KB
hdf5_data_layer.cpp 6KB
convert_box_data.cpp 5KB
共 2000 条
- 1
- 2
- 3
- 4
- 5
- 6
- 20
资源评论
赵闪闪168
- 粉丝: 1726
- 资源: 6638
上传资源 快速赚钱
- 我的内容管理 展开
- 我的资源 快来上传第一个资源
- 我的收益 登录查看自己的收益
- 我的积分 登录查看自己的积分
- 我的C币 登录后查看C币余额
- 我的收藏
- 我的下载
- 下载帮助
最新资源
- CAP 定理(Consistency、Availability、Partition Tolerance Theorem),也称为 Brewer 定理,起源于在 2000 年 7 月,是加州大学伯克利分
- Fluent电弧,激光,熔滴一体模拟 UDF包括高斯旋转体热源、双椭球热源(未使用)、VOF梯度计算、反冲压力、磁场力、表面张力,以及熔滴过渡所需的熔滴速度场、熔滴温度场和熔滴VOF
- 哈工大数据结构课程写的一些代码.zip
- 图书借阅系统,大二数据库课程大作业.LibaraySystem, Data.zip
- 双馈风机 DFIG 低电压穿越 MATLAB仿真模型simulink, LVRT 双馈异步风力,Crowbar电路,波形如图 (1)转子侧变器采用基于定子电压定向的矢量控制策略,有功无功解耦,具备MP
- 图书馆系统,大一java课程设计,swing界面,基本数据库操作.zip
- - 使用Seata的AT事务保障数据一致性 - 使用Kafka来保障异步记账效率
- (2025)Unity Barracuda-3.0.1发布版
- C#课程大作业基于C#实现的个人博客Blog源代码+数据库,带GUI界面
- EcgLab_v1_0_4c_cn_111117.EXE
- 城南大数据平台项目.zip
- 电动汽车充电负荷概率预测的条件扩散模型 利用去噪扩散模型,该模型可以通过学习扩散过程的反转,逐步将高斯先验转为实时时间序列数据 此外,我们将这种扩散模型与基于交叉注意的条件调节机制相结合,对可能的充
- 这是一个功能齐全的 Scala http 客户端,它包装了 java.net.HttpURLConnection
- (2025)Unity导入GLB的插件 GLTFUtility-0.7.2
- 基于java开发,功能强大、配置灵活的数据库之间同步工具,可以执行多个数据同步任务,并且可以根据cron表达式配置同步的周期和时间.zip
- 2025跨年倒计时html代码
资源上传下载、课程学习等过程中有任何疑问或建议,欢迎提出宝贵意见哦~我们会及时处理!
点击此处反馈
安全验证
文档复制为VIP权益,开通VIP直接复制
信息提交成功