<p align="center">
<img src="https://github.com/jina-ai/jina/blob/master/.github/logo-only.gif?raw=true" alt="Jina banner" width="200px">
</p>
<p align="center">
An easier way to build neural search in the cloud
</p>
<p align=center>
<a href="#license"><img src="https://github.com/jina-ai/jina/blob/master/.github/badges/license-badge.svg?raw=true" alt="Jina" title="Jina is licensed under Apache-2.0"></a>
<a href="https://pypi.org/project/jina/"><img src="https://github.com/jina-ai/jina/blob/master/.github/badges/python-badge.svg?raw=true" alt="Python 3.7 3.8 3.9" title="Jina supports Python 3.7 and above"></a>
<a href="https://pypi.org/project/jina/"><img src="https://img.shields.io/pypi/v/jina?color=%23099cec&label=PyPI&logo=pypi&logoColor=white" alt="PyPI"></a>
<a href="https://hub.docker.com/r/jinaai/jina/tags"><img src="https://img.shields.io/docker/v/jinaai/jina?color=%23099cec&label=Docker&logo=docker&logoColor=white&sort=semver" alt="Docker Image Version (latest semver)"></a>
<a href="https://github.com/jina-ai/jina/actions?query=workflow%3ACI"><img src="https://github.com/jina-ai/jina/workflows/CI/badge.svg" alt="CI"></a>
<a href="https://github.com/jina-ai/jina/actions?query=workflow%3ACD"><img src="https://github.com/jina-ai/jina/workflows/CD/badge.svg?branch=master" alt="CD"></a>
<a href="https://codecov.io/gh/jina-ai/jina"><img src="https://codecov.io/gh/jina-ai/jina/branch/master/graph/badge.svg" alt="codecov"></a>
</p>
Jina is a deep learning-powered search framework for building <strong>cross-/multi-modal search systems</strong> (e.g. text, images, video, audio) in the cloud.
â±ï¸ **Time Saver** - *The* design pattern of neural search systems, from zero to a production-ready system in minutes.
ð **Universal Search** - Large-scale indexing and querying of unstructured data: video, image, long/short text, music, source code, etc.
ð§ **First-Class AI Models** - First-class support for [state-of-the-art AI models](https://docs.jina.ai/chapters/all_exec.html).
âï¸ **Cloud Ready** - Decentralized architecture with cloud-native features out-of-the-box: containerization, microservice, scaling, sharding, async IO, REST, gRPC, WebSocket.
𧩠**Plug & Play** - Easily usable and extendable with a Pythonic interface.
â¤ï¸ **Made with Love** - Lean dependencies (only 6!) & tip-top, never compromises on quality, maintained by a [passionate full-time, venture-backed team](https://jina.ai).
---
<p align="center">
<a href="http://docs.jina.ai">Docs</a> ⢠<a href="#jina-hello-world-">Hello World</a> ⢠<a href="#get-started">Quick Start</a> ⢠<a href="#learn">Learn</a> ⢠<a href="https://github.com/jina-ai/examples">Examples</a> ⢠<a href="#contributing">Contribute</a> ⢠<a href="https://jobs.jina.ai">Jobs</a> ⢠<a href="http://jina.ai">Website</a> ⢠<a href="http://slack.jina.ai">Slack</a>
</p>
## Installation
| ð¦<br><sub><sup>x86/64,arm/v6,v7,[v8 (Apple M1)](https://github.com/jina-ai/jina/issues/1781)</sup></sub> | On Linux/macOS & Python 3.7/3.8/[3.9](https://github.com/jina-ai/jina/issues/1801) | Docker Users|
| --- | --- | --- |
| Standard | `pip install -U jina` | `docker run jinaai/jina:latest` |
| <sub>Daemon</sub> | <sub>`pip install -U "jina[daemon]"`</sub> | <sub>`docker run --network=host jinaai/jina:latest-daemon`</sub> |
| <sub>With Extras</sub> | <sub>`pip install -U "jina[devel]"`</sub> | <sub>`docker run jinaai/jina:latest-devel`</sub> |
| <sub>Dev/Pre-Release</sub> | <sub>`pip install --pre jina`</sub> | <sub>`docker run jinaai/jina:master`</sub> |
Version identifiers [are explained here](https://github.com/jina-ai/jina/blob/master/RELEASE.md). To install Jina with extra dependencies [please refer to the docs](https://docs.jina.ai/chapters/install/via-pip.html). Jina can run on [Windows Subsystem for Linux](https://docs.microsoft.com/en-us/windows/wsl/install-win10). We welcome the community to help us with [native Windows support](https://github.com/jina-ai/jina/issues/1252).
## Jina "Hello, World!" ðð
Just starting out? Try Jina's "Hello, World" - a simple image neural search demo for [Fashion-MNIST](https://hanxiao.io/2018/09/28/Fashion-MNIST-Year-In-Review/). No extra dependencies needed, simply run:
```bash
jina hello-world
```
...or even easier for Docker users, **no install required**:
```bash
docker run -v "$(pwd)/j:/j" jinaai/jina hello-world --workdir /j && open j/hello-world.html
# replace "open" with "xdg-open" on Linux
```
<details>
<summary>Click here to see console output</summary>
<p align="center">
<img src="https://github.com/jina-ai/jina/blob/master/.github/images/hello-world-demo.png?raw=true" alt="hello world console output">
</p>
</details>
This downloads the Fashion-MNIST training and test dataset and tells Jina to index 60,000 images from the training set. Then it randomly samples images from the test set as queries and asks Jina to retrieve relevant results. The whole process takes about 1 minute, and after running opens a webpage and shows results:
<p align="center">
<img src="https://github.com/jina-ai/jina/blob/master/.github/images/hello-world.gif?raw=true" alt="Jina banner" width="80%">
</p>
Intrigued? Play with different options:
```bash
jina hello-world --help
```
## Get Started
| | |
| --- |---|
| ð£ | [Create](#create) ⢠[Visualize](#visualize) ⢠[Feed Data](#feed-data) ⢠[Fetch Result](#fetch-result) ⢠[Construct Document](#construct-document) ⢠[Add Logic](#add-logic) ⢠[Inter & Intra Parallelism](#inter--intra-parallelism) ⢠[Decentralize](#decentralized-flow) ⢠[Asynchronous](#asynchronous-flow) |
| ð | [Customize Encoder](#customize-encoder) ⢠[Test Encoder](#test-encoder-in-flow) ⢠[Parallelism & Batching](#parallelism--batching) ⢠[Add Data Indexer](#add-data-indexer) ⢠[Compose Flow from YAML](#compose-flow-from-yaml) ⢠[Search](#search) ⢠[Evaluation](#evaluation) ⢠[REST Interface](#rest-interface) |
#### Create
<a href="https://mybinder.org/v2/gh/jina-ai/jupyter-notebooks/main?filepath=basic-create-flow.ipynb"><img align="right" src="https://github.com/jina-ai/jina/blob/master/.github/badges/run-badge.svg?raw=true"/></a>
Jina provides a high-level [Flow API](https://101.jina.ai) to simplify building search/index workflows. To create a new Flow:
```python
from jina import Flow
f = Flow().add()
```
This creates a simple Flow with one [Pod](https://101.jina.ai). You can chain multiple `.add()`s in a single Flow.
#### Visualize
<a href="https://mybinder.org/v2/gh/jina-ai/jupyter-notebooks/main?filepath=basic-visualize-a-flow.ipynb"><img align="right" src="https://github.com/jina-ai/jina/blob/master/.github/badges/run-badge.svg?raw=true"/></a>
To visualize the Flow, simply chain it with `.plot('my-flow.svg')`. If you are using a Jupyter notebook, the Flow object will be automatically displayed inline *without* `plot`:
<img src="https://github.com/jina-ai/jina/blob/master/.github/simple-flow0.svg?raw=true"/>
`Gateway` is the entrypoint of the Flow.
#### Feed Data
<a href="https://mybinder.org/v2/gh/jina-ai/jupyter-notebooks/main?filepath=basic-feed-data.ipynb"><img align="right" src="https://github.com/jina-ai/jina/blob/master/.github/badges/run-badge.svg?raw=true"/></a>
To use a Flow, open it via `with` context manager, like you would open a file in Python. Now let's create some empty document and index it:
```python
from jina import Document
with Flow().add() as f:
f.index((Document() for _ in range(10)))
```
Flow supports CRUD operations: `index`, `search`, `update`, `delete`. Besides, it also provides sugary syntax on common data type such as files, text, and `ndarray`.
```python
with f:
f.index_ndarray(numpy.random.random([4,2]), on_done=print) # index ndarray data, document sliced on first dimension
f.index_lines(['hello world!', 'goodbye world!']) # index textual data, each element is a document
f.index_files(['/tmp
没有合适的资源?快使用搜索试试~ 我知道了~
温馨提示
资源分类:Python库 所属语言:Python 资源全名:jina-0.9.28.dev6.tar.gz 资源来源:官方 安装方法:https://lanzao.blog.csdn.net/article/details/101784059
资源推荐
资源详情
资源评论
收起资源包目录
Python库 | jina-0.9.28.dev6.tar.gz (422个子文件)
jina.bash 533B
setup.cfg 38B
fluent.conf 2KB
style.css 4KB
style.min.css 3KB
jina.fish 663B
index.html 15KB
helloworld.html 9KB
MANIFEST.in 94B
script.js 3KB
script.min.js 3KB
slack-jinahub.json 1KB
jina.logo 4KB
README.md 23KB
not-zip-safe 1B
PKG-INFO 31KB
PKG-INFO 31KB
jina_pb2.py 74KB
base.py 31KB
hubio.py 30KB
helper.py 26KB
__init__.py 24KB
__init__.py 23KB
asyncio.py 22KB
__init__.py 17KB
__init__.py 16KB
__init__.py 15KB
vector.py 15KB
__init__.py 15KB
__init__.py 15KB
decorators.py 14KB
__init__.py 14KB
compound.py 14KB
importer.py 13KB
model.py 13KB
model.py 13KB
__init__.py 10KB
lookup.py 10KB
app.py 10KB
__init__.py 10KB
zed.py 9KB
enums.py 9KB
__init__.py 9KB
client.py 9KB
__init__.py 9KB
builder.py 9KB
asyncio.py 8KB
img_text_composition_models.py 8KB
img_text_composition_models.py 8KB
helper.py 8KB
__init__.py 8KB
logger.py 8KB
__init__.py 8KB
base.py 8KB
profile.py 8KB
__init__.py 8KB
metas.py 7KB
devices.py 7KB
__init__.py 7KB
helper.py 7KB
__init__.py 7KB
__init__.py 7KB
legacy.py 7KB
__init__.py 7KB
clients.py 7KB
__init__.py 7KB
__init__.py 6KB
__init__.py 6KB
multimodal.py 6KB
evaluate.py 6KB
document.py 6KB
autocomplete.py 6KB
excepts.py 6KB
setup.py 5KB
__init__.py 5KB
remote.py 5KB
helper.py 5KB
flow_runner.py 5KB
cache.py 5KB
dunderkey.py 5KB
__init__.py 5KB
predict.py 5KB
search.py 5KB
local.py 5KB
helper.py 5KB
frameworks.py 5KB
control.py 5KB
keyvalue.py 5KB
__init__.py 5KB
base.py 5KB
__init__.py 5KB
__init__.py 5KB
websocket.py 5KB
milvusdbhandler.py 5KB
__init__.py 5KB
helper.py 5KB
__init__.py 5KB
mongodbhandler.py 4KB
helper.py 4KB
helper.py 4KB
共 422 条
- 1
- 2
- 3
- 4
- 5
资源评论
挣扎的蓝藻
- 粉丝: 14w+
- 资源: 15万+
上传资源 快速赚钱
- 我的内容管理 展开
- 我的资源 快来上传第一个资源
- 我的收益 登录查看自己的收益
- 我的积分 登录查看自己的积分
- 我的C币 登录后查看C币余额
- 我的收藏
- 我的下载
- 下载帮助
最新资源
- Android 凭证交换和更新协议 - “你只需登录一次”.zip
- 2024 年 ICONIP 展会.zip
- 微信小程序毕业设计-基于SSM的电影交流小程序【代码+论文+PPT】.zip
- 微信小程序毕业设计-基于SSM的食堂线上预约点餐小程序【代码+论文+PPT】.zip
- 锐捷交换机的堆叠,一个大问题
- 微信小程序毕业设计-基于SSM的校园失物招领小程序【代码+论文+PPT】.zip
- MATLAB《结合萨克拉门托模型和遗传算法为乐安河流域建立一个水文过程预测模型》+项目源码+文档说明
- 基于人工神经网络/随机森林/LSTM的径流预测项目
- 微信小程序毕业设计-基于SSM的驾校预约小程序【代码+论文+PPT】.zip
- Aspose.Words 18.7 版本 Word转成PDF无水印
资源上传下载、课程学习等过程中有任何疑问或建议,欢迎提出宝贵意见哦~我们会及时处理!
点击此处反馈
安全验证
文档复制为VIP权益,开通VIP直接复制
信息提交成功