没有合适的资源?快使用搜索试试~ 我知道了~
Fast Neighborhood Search for the Nesting Problem
需积分: 9 4 下载量 34 浏览量
2019-03-16
20:03:30
上传
评论
收藏 2.96MB PDF 举报
温馨提示
Benny Kjr Nielsen and Allan Odgaard fbenny, dug@diku.dk February 14, 2003 The main subject of this thesis is the so-called nesting problem, which (in short) is the problem of packing arbitrary two-dimensional shapes within the boundaries of some container. The objective can vary e.g. minimizing the size of a rectangular container or maximizing the number of shapes in the container, but the core problem is to pack the shapes tightly without any overlap.
资源推荐
资源详情
资源评论
Fast Neighborhood Search for the Nesting Problem
1
Benny Kjær Nielsen and Allan Odgaard
{benny, duff}@diku.dk
February 14, 2003
1
Technical Report no. 03/02, DIKU, University of Copenhagen, DK-2100 Copenhagen Ø, Denmark.
Contents
1 Introduction 5
2 The Nesting Problem 7
2.1 Problem definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2 Geometric aspects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.3 Existing solution methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.4 Legal placement methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.5 Relaxed placement methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.6 Commercial solvers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.7 3D nesting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3 Solution Methods 23
3.1 Local search . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.2 Guided Local Search . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.3 Initial solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.4 Packing strategies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
4 Fast Neighborhood Search 31
4.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
4.2 A special formula for intersection area . . . . . . . . . . . . . . . . . . . . . . . 32
4.2.1 Vector fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
4.2.2 Segment and vector field regions . . . . . . . . . . . . . . . . . . . . . . 33
4.2.3 Signed boundaries and shapes . . . . . . . . . . . . . . . . . . . . . . . . 35
4.2.4 The Intersection Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . 37
4.2.5 A simple example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
4.3 Transformation algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
4.4 Translation of polygons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
4.5 Rotation of polygons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
5 Miscellaneous Constraints 53
5.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
5.2 Quality areas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
5.3 Margins between polygons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
5.3.1 A straightforward solution . . . . . . . . . . . . . . . . . . . . . . . . . . 57
5.3.2 Rounding the corners . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
5.3.3 Self intersections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
5.4 Minimizing cutting path length . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
3
6 3D Nesting 63
6.1 A generalization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
6.2 The straightforward approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
6.3 Reducing the number of breakpoints . . . . . . . . . . . . . . . . . . . . . . . . 67
7 Implementation Issues 73
7.1 General information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
7.2 Input description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
7.3 Slab counting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
7.4 Incorporating penalties in translation . . . . . . . . . . . . . . . . . . . . . . . . 77
7.5 Handling non-rectangular material . . . . . . . . . . . . . . . . . . . . . . . . . 78
7.6 Approximating stencils . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
7.7 Center of a polygon . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
8 Computational Experiments 85
8.1 2D experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
8.1.1 Strategy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
8.1.2 Data instances . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
8.1.3 Lambda . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
8.1.4 Approximations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
8.1.5 Strip length strategy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
8.1.6 Quality requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
8.1.7 Comparisons with published results . . . . . . . . . . . . . . . . . . . . 92
8.1.8 Comparisons with a commercial solver . . . . . . . . . . . . . . . . . . . 94
8.2 3D experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
8.2.1 Data instances . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
8.2.2 Statistics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
8.2.3 Benchmarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
9 Conclusions 101
A Placements 107
4
Chapter 1
Introduction
The main subject of this thesis is the so-called nesting problem, which (in short) is the problem
of packing arbitrary two-dimensional shapes within the boundaries of some container. The
objective can vary e.g. minimizing the size of a rectangular container or maximizing the number
of shapes in the container, but the core problem is to pack the shapes tightly without any
overlap. An example of a tight packing is shown in Figure 1.1.
A substantial amount of literature has been written about this problem, where most of it has
been written within the past decade. A survey of the existing literature is given in Chapter 2
along a detailed description of different problem types and various geometric approaches to
these problems. At the end of the chapter a three-dimensional variant of the problem is
described and the more limited amount of literature in this area is also discussed.
The rest of the thesis is focused on solving the nesting problem with a meta heuristic
method called Guided Local Search (GLS). It is a continuation of the work presented in a
written report (in Danish) by Jens Egeblad and ourselves [28], which again is a continuation
of the work presented in an article by Færø et al. [32]. Throughout this thesis we will often
refer to the work done by Jens Egeblad and ourselves (Egeblad et al. [28]).
Chapter 3 presents GLS and some other issues regarding the basics of our solution method.
Most importantly the neighborhood for the local search is presented — it is a fast search of
this neighborhood which is the major strength of our approach to the nesting problem.
Færø et al. successfully applied the GLS meta heuristic to the rectangular bin packing
problem in both two and three dimensions. The speed of their approach was especially due to
a simple and very fast translation algorithm which could find the optimal (minimum overlap)
axis-aligned placement of a given box. Egeblad et al. [28] realized that a similar algorithm was
possible for translating arbitrary polygons. However, they did not prove the correctness of the
algorithm.
A major part of this thesis (Chapter 4) is dedicated to such a proof. The proof is stated
in general terms and translation and polygons are introduced at a very late stage. By doing
this it is simultaneously shown that the algorithm could be useful for other transformations
or other shapes. At the end of the chapter some additional work is done to adapt the general
scheme to an algorithm for rotation of polygons.
Although not explicitly proven it is easy to see that the fast translation and rotation
algorithms are also possible for three dimensions. A description of how to do this in practice
for translation is given separately in Chapter 6.
The two-dimensional nesting problem appears in a range of different industries and quite
5
剩余108页未读,继续阅读
资源评论
CoolCodingMan
- 粉丝: 141
- 资源: 20
上传资源 快速赚钱
- 我的内容管理 展开
- 我的资源 快来上传第一个资源
- 我的收益 登录查看自己的收益
- 我的积分 登录查看自己的积分
- 我的C币 登录后查看C币余额
- 我的收藏
- 我的下载
- 下载帮助
最新资源
资源上传下载、课程学习等过程中有任何疑问或建议,欢迎提出宝贵意见哦~我们会及时处理!
点击此处反馈
安全验证
文档复制为VIP权益,开通VIP直接复制
信息提交成功