# FT-BarrierCertificate
UAV Simulation of our paper 'Barrier Certificate based Safe Control for LiDAR-based Systems under Sensor Faults and Attacks'
> H. Zhang, S. Cheng, L. Niu and A. Clark, "Barrier Certificate based Safe Control for LiDAR-based Systems under Sensor Faults and Attacks," 2022 IEEE 61st Conference on Decision and Control (CDC), Cancun, Mexico, 2022, pp. 2256-2263, doi: 10.1109/CDC51059.2022.9992432.
<img src="Figures/image.png" alt="image" height="200" /> <img src="Figures/lidar.png" alt="lidar" height="200" />
## Description
This section evaluates our proposed approach on a UAV delivery system in an urban environment.
The UAV system is based on MATLAB UAV Package Delivery Exampl. The UAV adopts stability, velocity and altitude control modules, rendering its position control dynamics to be:
```math
\begin{equation}
\begin{bmatrix}
[x]_1\\
[x]_2
\end{bmatrix}_{k+1}
=
\begin{bmatrix}
1 & -4.29\times 10^{-5}\\
-1.47\times 10^{-5} & 1
\end{bmatrix}
\begin{bmatrix}
[x]_1\\
[x]_2
\end{bmatrix}_{k}
+
\begin{bmatrix}
0.0019 & -1.93\times 10^{-5}\\
-2.91\times 10^{-4} & 0.0028
\end{bmatrix}
\begin{bmatrix}
[u]_1\\
[u]_2
\end{bmatrix}_{k},
\end{equation}
```
where $x[k]=[[x]_1,[x]_2]^T$ is the UAV position, $[x]_1$ and $[x]_2$ represent the position of UAV on $X$-axis and $Y$-axis, respectively. The UAV has one LiDAR sensor and two inertial navigation system (INS) sensors, denoted as INS1 and INS2. The UAV maintains two EKFs associated with each INS sensor to estimate its position at each time $k$, denoted as $\hat{x}_1[k]$ and $\hat{x}_2[k]$, respectively. The system operates in the presence of an adversary who can compromise one of the INS sensors and spoof the LiDAR sensor.
Fault tolerant estimation for LiDAR-based system removes conflicting state estimations by comparing estimations of proprioceptive sensors with additional information from exteroceptive sensors measurements.
<img src="Figures/FT-Est5.png" alt="FT-Est5" height="200" />
## Getting Started
### Environment
* MATLAB 2020b
* UAV Toolbox for 2020b and its dependency
#### Run FT-LiDAR Estimation
* In UAV_FT-LiDAR_Est directory
* Run *attack_figure.m*
#### Run Baseline under FDI Attacks
* In UAV_Baseline directory
* Open project file *uavPackageDelivery.prj*
* Run file *FlyFullMission.m* or Click the icon indexed 6
* Run Simulation file *uavPackageDelivery.slx* by clicking *RUN*
#### Run FT-Barrier Certificate under FDI Attacks
* In UAV_FTBC directory
* Open project file *uavPackageDelivery.prj*
* Run file *FlyFullMission.m* or Click the icon indexed 6
* Load *mapdataDemo.mat*
* Run Simulation file *uavPackageDelivery.slx* by clicking *RUN*
#### Data and Plots in Our Paper
* In DataFigures directory
* Run *CDC_figure_1.m* to plot FT-LiDAR Estimation figures
* Run *CDC_figure_2.m* to visualize trajectories of the UAV when controlled using our proposed approach and the baseline.
## Code Authors
* Hongchao Zhang, Ph.D. Candidate, hongchao@wustl.edu, \
Electrical & System Engineering, Washington University in St. Louis
* Shiyu Cheng, Ph.D. Student, cheng.shiyu@wustl.edu \
Electrical & System Engineering, Washington University in St. Louis
matlab科研助手
- 粉丝: 3w+
- 资源: 5991
最新资源
- 新能源电池包气密性检测stp全套技术资料100%好用.zip
- MIPI-DPU platform TCL
- MATLAB 实现基于核密度估计(KDE)进行时间序列预测模型的项目详细实例(含完整的程序,GUI设计和代码详解)
- MATLAB 实现基于贝叶斯网络(Bayesian Network)进行时间序列预测模型的项目详细实例(含完整的程序,GUI设计和代码详解)
- 模型预测控制(MPC)+路径跟踪(PTC)+侧偏角软约束+主动前轮转向(AFS),目前的范例是72km h,附着系数0.3的单移线,附着系数0.85双移线 仿真使用的是MATLAB2020b版本和c
- 线缆装铠机sw18全套技术资料100%好用.zip
- MATLAB 实现基于ABKDE(自适应带宽核密度估计)进行时间序列预测模型的项目详细实例(含完整的程序,GUI设计和代码详解)
- comsol sofc固体氧化物燃料电池 单通道非绝热逆流固体氧化物燃料电池模型,包括阴阳极气体扩散层,电极扩散层尺寸来源于实际电池(极化曲线,性能曲线,气体分布,温度分布)
- MATLAB 实现基于自适应滤波(Adaptive Filtering)进行时间序列预测模型的项目详细实例(含完整的程序,GUI设计和代码详解)
- nltk的punkt与stopwords
- MATLAB 实现基于K近邻回归(KNN)进行时间序列预测模型的项目详细实例(含完整的程序,GUI设计和代码详解)
- Steam++ -v3.0.0-rc.11-win-x64
- 星巴克杯子圆弧涂胶x_t全套技术资料100%好用.zip
- MATLAB实现COA-CNN-BiLSTM-Attention-RF浣熊优化卷积双向长短期记忆神经网络注意力机制组合随机森林多输入单输出回归预测(含完整的程序,GUI设计和代码详解)
- 永磁同步电机电流环模型预测控制(MPC)simulink仿真模型,速度环PI控制,电流环为MPC控制,不是FOC控制
- 药瓶侧身扫码抓取称重设备X_T全套技术资料100%好用.zip
资源上传下载、课程学习等过程中有任何疑问或建议,欢迎提出宝贵意见哦~我们会及时处理!
点击此处反馈