%% 该代码为基于FCM-GRNN的聚类算法
%
%% 清空环境文件
clear all;
clc;
%% 提取攻击数据
%攻击样本数据
load netattack;
P1=netattack;
T1=P1(:,39)';
P1(:,39)=[];
%数据大小
[R1,C1]=size(P1);
csum=20; %提取训练数据多少
%% 模糊聚类
data=P1;
[center,U,obj_fcn] = fcm(data,5);
for i=1:R1
[value,idx]=max(U(:,i));
a1(i)=idx;
end
%% 模糊聚类结果分析
Confusion_Matrix_FCM=zeros(6,6);
Confusion_Matrix_FCM(1,:)=[0:5];
Confusion_Matrix_FCM(:,1)=[0:5]';
for nf=1:5
for nc=1:5
Confusion_Matrix_FCM(nf+1,nc+1)=length(find(a1(find(T1==nf))==nc));
end
end
%% 网络训练样本提取
cent1=P1(find(a1==1),:);cent1=mean(cent1);
cent2=P1(find(a1==2),:);cent2=mean(cent2);
cent3=P1(find(a1==3),:);cent3=mean(cent3);
cent4=P1(find(a1==4),:);cent4=mean(cent4);
cent5=P1(find(a1==5),:);cent5=mean(cent5);
%提取范数最小为训练样本
for n=1:R1;
ecent1(n)=norm(P1(n,:)-cent1);
ecent2(n)=norm(P1(n,:)-cent2);
ecent3(n)=norm(P1(n,:)-cent3);
ecent4(n)=norm(P1(n,:)-cent4);
ecent5(n)=norm(P1(n,:)-cent5);
end
for n=1:csum
[va me1]=min(ecent1);
[va me2]=min(ecent2);
[va me3]=min(ecent3);
[va me4]=min(ecent4);
[va me5]=min(ecent5);
ecnt1(n,:)=P1(me1(1),:);ecent1(me1(1))=[];tcl(n)=1;
ecnt2(n,:)=P1(me2(1),:);ecent2(me2(1))=[];tc2(n)=2;
ecnt3(n,:)=P1(me3(1),:);ecent3(me3(1))=[];tc3(n)=3;
ecnt4(n,:)=P1(me4(1),:);ecent4(me4(1))=[];tc4(n)=4;
ecnt5(n,:)=P1(me5(1),:);ecent5(me5(1))=[];tc5(n)=5;
end
P2=[ecnt1;ecnt2;ecnt3;ecnt4;ecnt5];T2=[tcl,tc2,tc3,tc4,tc5];
k=0;
%% 迭代计算
for nit=1:10%开始迭代
%% 广义神经网络聚类
net = newgrnn(P2',T2,50); %训练广义网络
a2=sim(net,P1') ; %预测结果
%输出标准化(根据输出来分类)
a2(find(a2<=1.5))=1;
a2(find(a2>1.5&a2<=2.5))=2;
a2(find(a2>2.5&a2<=3.5))=3;
a2(find(a2>3.5&a2<=4.5))=4;
a2(find(a2>4.5))=5;
%% 网络训练数据再次提取
cent1=P1(find(a2==1),:);cent1=mean(cent1);
cent2=P1(find(a2==2),:);cent2=mean(cent2);
cent3=P1(find(a2==3),:);cent3=mean(cent3);
cent4=P1(find(a2==4),:);cent4=mean(cent4);
cent5=P1(find(a2==5),:);cent5=mean(cent5);
for n=1:R1%计算样本到各个中心的距离
ecent1(n)=norm(P1(n,:)-cent1);
ecent2(n)=norm(P1(n,:)-cent2);
ecent3(n)=norm(P1(n,:)-cent3);
ecent4(n)=norm(P1(n,:)-cent4);
ecent5(n)=norm(P1(n,:)-cent5);
end
%选择离每类中心最近的csum个样本
for n=1:csum
[va me1]=min(ecent1);
[va me2]=min(ecent2);
[va me3]=min(ecent3);
[va me4]=min(ecent4);
[va me5]=min(ecent5);
ecnt1(n,:)=P1(me1(1),:);ecent1(me1(1))=[];tc1(n)=1;
ecnt2(n,:)=P1(me2(1),:);ecent2(me2(1))=[];tc2(n)=2;
ecnt3(n,:)=P1(me3(1),:);ecent3(me3(1))=[];tc3(n)=3;
ecnt4(n,:)=P1(me4(1),:);ecent4(me4(1))=[];tc4(n)=4;
ecnt5(n,:)=P1(me5(1),:);ecent5(me5(1))=[];tc5(n)=5;
end
p2=[ecnt1;ecnt2;ecnt3;ecnt4;ecnt5];T2=[tc1,tc2,tc3,tc4,tc5];
%统计分类结果
Confusion_Matrix_GRNN=zeros(6,6);
Confusion_Matrix_GRNN(1,:)=[0:5];
Confusion_Matrix_GRNN(:,1)=[0:5]';
for nf=1:5
for nc=1:5
Confusion_Matrix_GRNN(nf+1,nc+1)=length(find(a2(find(T1==nf))==nc));
end
end
pre2=0;
for n=2:6;
pre2=pre2+max(Confusion_Matrix_GRNN(n,:));
end
pre2=pre2/R1*100;
end
%% 结果显示
Confusion_Matrix_FCM
Confusion_Matrix_GRNN
没有合适的资源?快使用搜索试试~ 我知道了~
温馨提示
1、资源内容:基于Matlab实现FCM-GRNN的聚类算法仿真(源码+数据).rar 2、适用人群:计算机,电子信息工程、数学等专业的大学生课程设计、期末大作业或毕业设计,作为“参考资料”使用。 3、解压说明:本资源需要电脑端使用WinRAR、7zip等解压工具进行解压,没有解压工具的自行百度下载即可。 4、免责声明:本资源作为“参考资料”而不是“定制需求”不一定能够满足所有人的需求,需要有一定的基础能够看懂代码,能够自行调试代码并解决报错,能够自行添加功能修改代码。由于作者大厂工作较忙,不提供答疑服务,如不存在资源缺失问题概不负责,谢谢理解。
资源推荐
资源详情
资源评论
收起资源包目录
基于Matlab实现FCM-GRNN的聚类算法仿真(源码+数据).rar (2个子文件)
基于Matlab实现FCM-GRNN的聚类算法仿真(源码+数据)
FCMGRNN.m 3KB
netattack.mat 27KB
共 2 条
- 1
资源评论
- GalaMing2023-12-11感谢资源主分享的资源解决了我当下的问题,非常有用的资源。
Matlab仿真实验室
- 粉丝: 3w+
- 资源: 2405
下载权益
C知道特权
VIP文章
课程特权
开通VIP
上传资源 快速赚钱
- 我的内容管理 展开
- 我的资源 快来上传第一个资源
- 我的收益 登录查看自己的收益
- 我的积分 登录查看自己的积分
- 我的C币 登录后查看C币余额
- 我的收藏
- 我的下载
- 下载帮助
最新资源
资源上传下载、课程学习等过程中有任何疑问或建议,欢迎提出宝贵意见哦~我们会及时处理!
点击此处反馈
安全验证
文档复制为VIP权益,开通VIP直接复制
信息提交成功