%% I. 清空环境变量
clear all
clc
%% II. 训练集/测试集产生
%%
% 1. 导入数据
load iris_data.mat
%%
% 2 随机产生训练集和测试集
P_train = [];
T_train = [];
P_test = [];
T_test = [];
for i = 1:3
temp_input = features((i-1)*50+1:i*50,:);
temp_output = classes((i-1)*50+1:i*50,:);
n = randperm(50);
% 训练集——120个样本
P_train = [P_train temp_input(n(1:40),:)'];
T_train = [T_train temp_output(n(1:40),:)'];
% 测试集——30个样本
P_test = [P_test temp_input(n(41:50),:)'];
T_test = [T_test temp_output(n(41:50),:)'];
end
%% III. 模型建立
result_grnn = [];
result_pnn = [];
time_grnn = [];
time_pnn = [];
for i = 1:4
for j = i:4
p_train = P_train(i:j,:);
p_test = P_test(i:j,:);
%%
% 1. GRNN创建及仿真测试
t = cputime;
% 创建网络
net_grnn = newgrnn(p_train,T_train);
% 仿真测试
t_sim_grnn = sim(net_grnn,p_test);
T_sim_grnn = round(t_sim_grnn);
t = cputime - t;
time_grnn = [time_grnn t];
result_grnn = [result_grnn T_sim_grnn'];
%%
% 2. PNN创建及仿真测试
t = cputime;
Tc_train = ind2vec(T_train);
% 创建网络
net_pnn = newpnn(p_train,Tc_train);
% 仿真测试
Tc_test = ind2vec(T_test);
t_sim_pnn = sim(net_pnn,p_test);
T_sim_pnn = vec2ind(t_sim_pnn);
t = cputime - t;
time_pnn = [time_pnn t];
result_pnn = [result_pnn T_sim_pnn'];
end
end
%% IV. 性能评价
%%
% 1. 正确率accuracy
accuracy_grnn = [];
accuracy_pnn = [];
time = [];
for i = 1:10
accuracy_1 = length(find(result_grnn(:,i) == T_test'))/length(T_test);
accuracy_2 = length(find(result_pnn(:,i) == T_test'))/length(T_test);
accuracy_grnn = [accuracy_grnn accuracy_1];
accuracy_pnn = [accuracy_pnn accuracy_2];
end
%%
% 2. 结果对比
result = [T_test' result_grnn result_pnn]
accuracy = [accuracy_grnn;accuracy_pnn]
time = [time_grnn;time_pnn]
%% V. 绘图
figure(1)
plot(1:30,T_test,'bo',1:30,result_grnn(:,4),'r-*',1:30,result_pnn(:,4),'k:^')
grid on
xlabel('测试集样本编号')
ylabel('测试集样本类别')
string = {'测试集预测结果对比(GRNN vs PNN)';['正确率:' num2str(accuracy_grnn(4)*100) '%(GRNN) vs ' num2str(accuracy_pnn(4)*100) '%(PNN)']};
title(string)
legend('真实值','GRNN预测值','PNN预测值')
figure(2)
plot(1:10,accuracy(1,:),'r-*',1:10,accuracy(2,:),'b:o')
grid on
xlabel('模型编号')
ylabel('测试集正确率')
title('10个模型的测试集正确率对比(GRNN vs PNN)')
legend('GRNN','PNN')
figure(3)
plot(1:10,time(1,:),'r-*',1:10,time(2,:),'b:o')
grid on
xlabel('模型编号')
ylabel('运行时间(s)')
title('10个模型的运行时间对比(GRNN vs PNN)')
legend('GRNN','PNN')
Matlab科研辅导帮
- 粉丝: 3w+
- 资源: 7814
最新资源
- 数据库期末试卷分享,欢迎大家来看
- 并网模式下采用粒子群算法进行微电网经济调度,含有储能调度,有注释
- 汽车ESP系统仿真建模,基于carsim与simulink联合仿真做的联合仿真,采用单侧双轮制动的控制方法 有完整的模型和说明
- 基于c++从图片中将68个特征点进行编号(完整代码)
- chrome 123234
- 活跃星系核对冷分子气体性质的影响研究 - 来自LLAMA调查的新证据
- 315 433MHZ无线遥控接收解码源程序 Keil源程序 含AD格式电路图
- 香橙派5安装windows-arm所需文件
- 基于c++从lib目录指定图片中识别出目标人物(完整代码)
- Postman Interceptor 3.0.5.crx
- labview控制 西门子S7-1200 1214 dcdcdcplc 程序 plc只需要设置连接机制与IP即可 通讯为TCP IP协议
- 信号与系统实验手册:采样与重建技术详解
- 机械与电气系统时频特性实验指南
- stm32 U盘升级 bootloader程序 基于stm32f407 将升级包下载到U盘中,插入到设备中,完成对主程序的升级,无需上位机操作 清单: u盘升级的bootloader源码
- 2-eMule电驴v0.70b
- ST traction inverter
资源上传下载、课程学习等过程中有任何疑问或建议,欢迎提出宝贵意见哦~我们会及时处理!
点击此处反馈