# ISAC_4D_IMaging
* 4D ISAC Imaging Simulation Based on Millimeter Wave OFDM Signals with MUSIC Algorithm Written in Matlab
* Deep Learning Based Multi-Node ISAC 4D Environmental Reconstruction with Uplink- Downlink Cooperation
# Document Structure
* 2D_FFT+2D_MUSCI
* ref_ofdm_imaging_2DFFT_2DMUSIC.m (Main function)
* qamxxx.m & demoduqamxxx.m (Modulation and demodulation)
* xxxx_CFAR.m (CFAR Detection)
* environment_SE.m (Simplified version of scatterer simulation)
* environment.m (Scatterers simulation)
* environment_disp.m (Display the simulation of environment)
* goldseq.m & m_generate.m (Sequence generation)
* rcoswindow.m (OFDM windowing algorithm)
## Imaging Results Presentation
![original](./2D_FFT_2D_MUSIC/image/original_environment.png)
![result](./2D_FFT_2D_MUSIC/image/2D_FFT+2D_music_result.png)
* 4D_FFT
* ref_ofdm_imaging_4DFFT.m (Main function)
* qamxxx.m & demoduqamxxx.m (Modulation and demodulation)
* xxxx_CFAR.m (CFAR Detection)
* environment_SE.m (Simplified version of scatterer simulation)
* environment.m (Scatterers simulation)
* environment_disp.m (Display the simulation of environment)
* goldseq.m & m_generate.m (Sequence generation)
* rcoswindow.m (OFDM windowing algorithm)
## Imaging Results Presentation
![original](./4D_FFT/image/original_environment.png)
![result](./4D_FFT/image/4DFFT_32_32RX_result.png)
## Single Node Metric
* Metric.py
## Multi-Node UL-DL Cooperation
The paper is being submitted and the code is being organized, so stay tuned!
![result](Multi-Node_UL-DL_Cooperation/multi_node_result.png)
## Publication of papers
* Single Node
https://ieeexplore.ieee.org/document/10465113
https://doi.org/10.48550/arXiv.2310.06401
* Multi Node
https://arxiv.org/abs/2404.14862
没有合适的资源?快使用搜索试试~ 我知道了~
基于 Matlab 编写的 MUSIC 算法的毫米波 OFDM 信号的 4D ISAC 成像仿真
共58个文件
m:40个
fig:6个
png:5个
2 下载量 111 浏览量
2024-08-29
11:02:39
上传
评论
收藏 6.04MB ZIP 举报
温馨提示
ISAC_4D_IMaging 基于 Matlab 编写的 MUSIC 算法的毫米波 OFDM 信号的 4D ISAC 成像仿真 基于深度学习的多节点 ISAC 4D 环境重构与上下行协同 文档结构 2D_FFT+2D_MUSCI ref_ofdm_imaging_2DFFT_2DMUSIC.m (主要功能) qamxxx.m & demoduqamxxx.m (调制和解调) xxxx_CFAR.m(CFAR 检测) environment_SE.m (散射体模拟的简化版本) environment.m (散射体模拟) environment_disp.m (显示环境模拟) goldseq.m & m_generate.m (序列生成) rcoswindow.m(OFDM 窗口算法) 4D_FFT ref_ofdm_imaging_4DFFT.m (主要功能) qamxxx.m & demoduqamxxx.m (调制和解调) xxxx_CFAR.m(CFAR 检测) environment_SE.m (散射体模拟的简化版本) environment.m (散射体模拟) environ
资源推荐
资源详情
资源评论
收起资源包目录
ISAC_4D_IMaging-main.zip (58个子文件)
ISAC_4D_IMaging-main
Multi-Node_UL-DL_Cooperation
multi_node_result.png 1.38MB
README.md 1B
2D_FFT_2D_MUSIC
WCA_CFAR_1D.m 3KB
rcoswindow.m 622B
qam16.m 688B
MUSUC_result.fig 2.54MB
image
2D_FFT+2D_music_result.png 29KB
original_environment.png 36KB
m_generate.m 285B
environment.m 5KB
OSCA_CFAR.m 2KB
original_environment.fig 51KB
qam64.m 2KB
environment_SE.m 5KB
smooth_covariance.m 558B
MUSIC_threshold.fig 2.13MB
environment_disp.m 6KB
demoduqam8.m 749B
qam4.m 641B
goldseq.m 653B
2D_FFT+2D_music_result.fig 79KB
CA_CFAR.m 4KB
qam32.m 1KB
demoduqam16.m 851B
demoduqam4.m 704B
demoduqam32.m 1KB
ref_ofdm_imaging_2DFFT_2DMUSIC.m 28KB
qam8.m 686B
README.md 582B
demoduqam64.m 2KB
Metric
data
pos_all.mat 2KB
pos_all_true.mat 2KB
Metric.py 3KB
README.md 2KB
4D_FFT
rcoswindow.m 622B
qam16.m 688B
image
4DFFT_32_32RX_result.png 30KB
original_environment.png 36KB
m_generate.m 285B
environment.m 5KB
OSCA_CFAR.m 2KB
original_environment.fig 67KB
qam64.m 2KB
ref_ofdm_imaging_4DFFT.m 28KB
environment_SE.m 5KB
environment_disp.m 6KB
demoduqam8.m 749B
qam4.m 641B
goldseq.m 653B
4DFFT_32_32RX_result.fig 73KB
CA_CFAR.m 4KB
qam32.m 1KB
demoduqam16.m 851B
demoduqam4.m 704B
demoduqam32.m 1KB
qam8.m 686B
README.md 563B
demoduqam64.m 2KB
共 58 条
- 1
资源评论
潦草通信狗
- 粉丝: 339
- 资源: 215
上传资源 快速赚钱
- 我的内容管理 展开
- 我的资源 快来上传第一个资源
- 我的收益 登录查看自己的收益
- 我的积分 登录查看自己的积分
- 我的C币 登录后查看C币余额
- 我的收藏
- 我的下载
- 下载帮助
最新资源
- sensors-18-03721.pdf
- Facebook.apk
- 推荐一款JTools的call-this-method插件
- json的合法基色来自红包东i请各位
- 项目采用YOLO V4算法模型进行目标检测,使用Deep SORT目标跟踪算法 .zip
- 针对实时视频流和静态图像实现的对象检测和跟踪算法 .zip
- 部署 yolox 算法使用 deepstream.zip
- 基于webmagic、springboot和mybatis的MagicToe Java爬虫设计源码
- 通过实时流协议 (RTSP) 使用 Yolo、OpenCV 和 Python 进行深度学习的对象检测.zip
- 基于Python和HTML的tb商品列表查询分析设计源码
资源上传下载、课程学习等过程中有任何疑问或建议,欢迎提出宝贵意见哦~我们会及时处理!
点击此处反馈
安全验证
文档复制为VIP权益,开通VIP直接复制
信息提交成功