没有合适的资源?快使用搜索试试~ 我知道了~
温馨提示
高清,带完整书签。做机器人以及SLAM有两本圣经,一本是大名鼎鼎的《Multiple View Geometry in Computer Vision》,另一本就是至今虽然尚未出版,但是已经在SLAM界广为流传的《State Estimation for Robotics》,这本书深入讲解了李代数的理论,以及从滤波器的角度来深入分析了机器人的状态估计方法。高博鼎力推荐。
资源推荐
资源详情
资源评论
STATE ESTIMATION FOR
ROBOTICS
Timothy D. Barfoot
Copyright
c
2017
Cambridge University Press is the Official Publisher
This Unofficial Version Compiled on December 10, 2017
Send errata to <tim.barfoot@utoronto.ca>
Revision History
13 May 2017 Version best matching published first edition
12 Aug 2017 Equation (4.47a): Σ
x
changed to Σ
xx
12 Aug 2017 Page 111, bullet 4: Σ
y
changed to Σ
yy
12 Aug 2017 Page 117, bullet (ii): changed 4(a) to 3
12 Aug 2017 Equation (4.87):
ˆ
P
−
changed to
ˇ
P
k
12 Aug 2017 Equation (4.89):
ˆ
P
k
changed to
ˇ
P
k
12 Aug 2017 Equation (4.102d): x
op,k,0
changed to x
op,k,i
12 Aug 2017 Equation (7.102): removed negative sign
22 Nov 2017 Fixed typo in Jacobi identity (page 218)
10 Dec 2017 Equation (2.52): Σ
−1
yy
Σ
yx
changed to Σ
xy
Σ
−1
yy
10 Dec 2017 Inline above (8.2): r
vi
i
changed to r
v
k
i
i
10 Dec 2017 Equation (6.26): 0 changed to 0
T
10 Dec 2017 Inline below (4.132): e(x
op
) = Lu(x
op
) changed to
e(x
op
) = L
−1
u(x
op
)
10 Dec 2017 Angular acceleration: ω
◦
−→
21
changed to ω
◦
−→
21
10 Dec 2017 Equation (4.31): corrected a double comma
10 Dec 2017 Equation (4.92a): n
k,j
changed to
ˇ
y
k,j
iii
Contents
Acronyms and Abbreviations xi
Notation xiii
Foreword xv
1 Introduction 1
1.1 A Little History 1
1.2 Sensors, Measurements, and Problem Definition 3
1.3 How This Book Is Organized 4
1.4 Relationship to Other Books 5
Part I Estimation Machinery 7
2 Primer on Probability Theory 9
2.1 Probability Density Functions 9
2.1.1 Definitions 9
2.1.2 Bayes’ Rule and Inference 10
2.1.3 Moments 11
2.1.4 Sample Mean and Covariance 12
2.1.5 Statistically Independent, Uncorrelated 12
2.1.6 Normalized Product 13
2.1.7 Shannon and Mutual Information 14
2.1.8 Cram´er-Rao Lower Bound and Fisher Information 14
2.2 Gaussian Probability Density Functions 15
2.2.1 Definitions 15
2.2.2 Isserlis’ Theorem 16
2.2.3 Joint Gaussian PDFs, Their Factors, and Inference 18
2.2.4 Statistically Independent, Uncorrelated 20
2.2.5 Linear Change of Variables 20
2.2.6 Normalized Product of Gaussians 22
2.2.7 Sherman-Morrison-Woodbury Identity 23
2.2.8 Passing a Gaussian through a Nonlinearity 24
2.2.9 Shannon Information of a Gaussian 28
2.2.10 Mutual Information of a Joint Gaussian PDF 30
2.2.11 Cram´er-Rao Lower Bound Applied to Gaussian PDFs 30
2.3 Gaussian Processes 32
2.4 Summary 33
2.5 Exercises 33
v
剩余393页未读,继续阅读
资源评论
- zhengyongfei2018-07-26很好的学习资料
- wnwin1232019-06-10高清,带完整书签。
- 温馨小花朵2019-12-31资料很不错
- tcbinghuangxuewu2018-01-24是最新的,不错不错
feijuncong
- 粉丝: 1
- 资源: 6
上传资源 快速赚钱
- 我的内容管理 展开
- 我的资源 快来上传第一个资源
- 我的收益 登录查看自己的收益
- 我的积分 登录查看自己的积分
- 我的C币 登录后查看C币余额
- 我的收藏
- 我的下载
- 下载帮助
最新资源
资源上传下载、课程学习等过程中有任何疑问或建议,欢迎提出宝贵意见哦~我们会及时处理!
点击此处反馈
安全验证
文档复制为VIP权益,开通VIP直接复制
信息提交成功