没有合适的资源?快使用搜索试试~ 我知道了~
资源推荐
资源详情
资源评论
STATE ESTIMATION FOR
ROBOTICS
Timothy D. Barfoot
Copyright
c
2017
Cambridge University Press is the Official Publisher
This Unofficial Version Compiled on May 13, 2017
Send errata to <tim.barfoot@utoronto.ca>
Revision History
13 May 2017 Version best matching published first edition
iii
Contents
Acronyms and Abbreviations xi
Notation xiii
Foreword xv
1 Introduction 1
1.1 A Little History 1
1.2 Sensors, Measurements, and Problem Definition 3
1.3 How This Book Is Organized 4
1.4 Relationship to Other Books 5
Part I Estimation Machinery 7
2 Primer on Probability Theory 9
2.1 Probability Density Functions 9
2.1.1 Definitions 9
2.1.2 Bayes’ Rule and Inference 10
2.1.3 Moments 11
2.1.4 Sample Mean and Covarian c e 12
2.1.5 Statistically Independent, Uncorrelated 12
2.1.6 Normalized Product 13
2.1.7 Shannon and Mutual Information 14
2.1.8 Cram´er-Rao Lower Bound and Fisher Information 14
2.2 Gaussian Probability Density Functions 15
2.2.1 Definitions 15
2.2.2 Isserlis’ Theorem 16
2.2.3 Joint Gaussian PDFs, Their Factors, and Inference 18
2.2.4 Statistically Independent, Uncorrelated 20
2.2.5 Linear Change of Variables 20
2.2.6 Normalized Product of Gaussians 22
2.2.7 Sherman-Morrison-Woodbury Id entity 23
2.2.8 Passin g a G au s si a n through a Nonlinearity 24
2.2.9 Shannon Information of a Gaussian 28
2.2.10 Mutual Information of a Joint Gaussian PDF 30
2.2.11 Cram´er-Rao Lower Bound Applied to Gaussian PDFs 30
2.3 Gaussian Processes 32
2.4 Summary 33
2.5 Exercises 33
v
剩余393页未读,继续阅读
资源评论
weixin_37835458
- 粉丝: 2
- 资源: 8
上传资源 快速赚钱
- 我的内容管理 展开
- 我的资源 快来上传第一个资源
- 我的收益 登录查看自己的收益
- 我的积分 登录查看自己的积分
- 我的C币 登录后查看C币余额
- 我的收藏
- 我的下载
- 下载帮助
最新资源
资源上传下载、课程学习等过程中有任何疑问或建议,欢迎提出宝贵意见哦~我们会及时处理!
点击此处反馈
安全验证
文档复制为VIP权益,开通VIP直接复制
信息提交成功