A. Gupta, R. K. Jha: Survey of 5G Network: Architecture and Emerging Technologies
Along with this, a supplementary spectrum is accessible
which accredit operators manage their network very compli-
antly and offers better coverage with improved performance
for less cost [4]–[7].
F. 4G
4G is generally referred as the descendant of the 3G and 2G
standards. 3rd Generation Partnership Project (3GPP)
is presently standardizing Long Term Evolution (LTE)
Advanced as forthcoming 4G standard along with Mobile
Worldwide Interoperability for Microwave Access (WIMAX).
A 4G system improves the prevailing communication
networks by imparting a complete and reliable solution based
on IP. Amenities like voice, data and multimedia will be
imparted to subscribers on every time and everywhere basis
and at quite higher data rates as related to earlier generations.
Applications that are being made to use a 4G network are
Multimedia Messaging Service (MMS), Digital Video
Broadcasting (DVB), and video chat, High Definition TV
content and mobile TV [2], [4]–[6].
G. 5G
With an exponential increase in the demand of the users,
4G will now be easily replaced with 5G with an
advanced access technology named Beam Division Multiple
Access (BDMA) and Non- and quasi-orthogonal or Filter
Bank multi carrier (FBMC) multiple access. The concept
behind BDMA technique is explained by considering the case
of the base station communicating with the mobile stations.
In this communication, an orthogonal beam is allocated to
each mobile station and BDMA technique will divide that
antenna beam according to locations of the mobile stations
for giving multiple accesses to the mobile stations, which
correspondingly increase the capacity of the system [8].
An idea to shift towards 5G is based on current drifts, it is
commonly assumed that 5G cellular networks must address
six challenges that are not effectively addressed by 4G i.e.
higher capacity, higher data rate, lower End to End latency,
massive device connectivity, reduced cost and consistent
Quality of Experience provisioning [22], [23]. These
challenges are concisely shown in Fig. 2 along with
some potential facilitators to address them. An overview
of the challenges, facilitators, and corresponding design
fundamentals for 5G is shown in Fig. 2 [20]. Recently
introduced IEEE 802.11ac, 802.11ad and 802.11af standards
are very helpful and act as a building blocks in the road
towards 5G [9]–[13]. The technical comparison between these
standards is shown in table 1 and the detailed comparison of
wireless generations is shown in table 2.
III. 5G CELLULAR NETWORK ARCHITECTURE
To contemplate 5G network in the market now, it is evident
that the multiple access techniques in the network are
almost at a still and requires sudden improvement. Current
technologies like OFDMA will work at least for next
50 years. Moreover, there is no need to have a change in
the wireless setup which had come about from 1G to 4G.
Alternatively, there could be only the addition of an appli-
cation or amelioration done at the fundamental network to
please user requirements. This will provoke the package
providers to drift for a 5G network as early as 4G is com-
mercially set up [8]. To meet the demands of the user and
to overcome the challenges that has been put forward in the
5G system, a drastic change in the strategy of designing
the 5G wireless cellular architecture is needed. A general
observation of the researchers has shown in [14] that most of
the wireless users stay inside for approximately 80 percent of
time and outside for approximately 20 percent of the time.
In present wireless cellular architecture, for a mobile user
to communicate whether inside or outside, an outside base
station present in the middle of a cell helps in communication.
So for inside users to communicate with the outside base
station, the signals will have to travel through the walls of
the indoors, and this will result in very high penetration loss,
which correspondingly costs with reduced spectral efficiency,
data rate, and energy efficiency of wireless communications.
To overcome this challenge, a new idea or designing tech-
nique that has come in to existence for scheming the
5G cellular architecture is to distinct outside and inside
setups [8]. With this designing technique, the penetration loss
through the walls of the building will be slightly reduced.
This idea will be supported with the help of massive MIMO
technology [15], in which geographically dispersed array
of antenna’s are deployed which have tens or hundreds of
antenna units. Since present MIMO systems are using either
two or four antennas, but the idea of massive MIMO systems
has come up with the idea of utilizing the advantages of large
array antenna elements in terms of huge capacity gains.
To build or construct a large massive MIMO network,
firstly the outside base stations will be fitted with large
antenna arrays and among them some are dispersed around
the hexagonal cell and linked to the base station through
optical fiber cables, aided with massive MIMO technologies.
The mobile users present outside are usually fitted with a
certain number of antenna units but with cooperation a large
virtual antenna array can be constructed, which together with
antenna arrays of base station form virtual massive MIMO
links. Secondly, every building will be installed with large
antenna arrays from outside, to communicate with outdoor
base stations with the help of line of sight components.
The wireless access points inside the building are connected
with the large antenna arrays through cables for communi-
cating with indoor users. This will significantly improves
the energy efficiency, cell average throughput, data rate, and
spectral efficiency of the cellular system but at the expense
of increased infrastructure cost. With the introduction of
such an architecture, the inside users will only have to
connect or communicate with inside wireless access points
while larger antenna arrays remained installed outside the
buildings [8]. For indoor communication, certain technolo-
gies like WiFi, Small cell, ultra wideband, millimeter wave
communications [16], and visible light communications [17]
1208 VOLUME 3, 2015