function [lb,ub,dim,fobj] = Get_Functions_details(F)
switch F
case 'F1'
fobj = @F1;
lb=-100;
ub=100;
dim=10;
case 'F2'
fobj = @F2;
lb=-10;
ub=10;
dim=10;
case 'F3'
fobj = @F3;
lb=-100;
ub=100;
dim=30;
case 'F4'
fobj = @F4;
lb=-10;
ub=10;
dim=30;
case 'F5'
fobj = @F5;
lb=-30;
ub=30;
dim=30;
case 'F6'
fobj = @F6;
lb=-100;
ub=100;
dim=30;
case 'F7'
fobj = @F7;
lb=-1.28;
ub=1.28;
dim=30;
case 'F8'
fobj = @F8;
lb=-10;
ub=10;
dim=10;
case 'F9'
fobj = @F9;
lb=-10;
ub=10;
dim=10;
case 'F10'
fobj = @F10;
lb=-1;
ub=1;
dim=30;
case 'F11'
fobj = @F11;
lb=-100;
ub=100;
dim=30;
case 'F12'
fobj = @F12;
lb=-10;
ub=10;
dim=10;
case 'F13'
fobj = @F13;
lb=-500;
ub=500;
dim=30;
case 'F14'
fobj = @F14;
lb=-5.12;
ub=5.12;
dim=10;
case 'F15'
fobj = @F15;
lb=-32;
ub=32;
dim=10;
case 'F16'
fobj = @F16;
lb=-600;
ub=600;
dim=10;
case 'F17'
fobj = @F17;
lb=-50;
ub=50;
dim=30;
case 'F18'
fobj = @F18;
lb=-50;
ub=50;
dim=30;
case 'F19'
fobj = @F19;
lb=-500;
ub=500;
dim=30;
case 'F20'
fobj = @F20;
lb=-5;
ub=5;
dim=4;
case 'F21'
fobj = @F21;
lb=-5.12;
ub=5.12;
dim=2;
case 'F22'
fobj = @F22;
lb=-10;
ub=10;
dim=2;
case 'F23'
fobj = @F23;
lb=-100;
ub=100;
dim=2;
case 'F24'
fobj = @F24;
lb=-65.536;
ub=65.536;
dim=2;
case 'F25'
fobj = @F25;
lb=-5;
ub=5;
dim=4;
case 'F26'
fobj = @F26;
lb=-5;
ub=5;
dim=2;
case 'F27'
fobj = @F27;
lb=[-5,0];
ub=[10,15];
dim=2;
case 'F28'
fobj = @F28;
lb=-2;
ub=2;
dim=2;
case 'F29'
fobj = @F29;
lb=0;
ub=1;
dim=3;
case 'F30'
fobj = @F30;
lb=0;
ub=1;
dim=6;
case 'F31'
fobj = @F31;
lb=0;
ub=10;
dim=4;
case 'F32'
fobj = @F32;
lb=0;
ub=10;
dim=4;
case 'F33'
fobj = @F33;
lb=0;
ub=10;
dim=4;
case 'F34'
fobj = @F34;
lb=-100;
ub=100;
dim=2;
case 'F35'
fobj = @F35;
lb=-4;
ub=5;
dim=30;
end
end
% F1
function o = F1(x)
o=sum(x.^2);
end
% F2
function o = F2(x)
o=sum(abs(x))+prod(abs(x));
% o = ((sin(sqrt(sum(x.^2))))^2-0.5)/(1+0.001*sum(x.^2))+0.5;
end
% F3
function o = F3(x)
dim=size(x,2);
o=0;
for i=1:dim
o=o+sum(x(1:i))^2;
end
end
% F4
function o = F4(x)
o=max(abs(x));
end
% F5
function o = F5(x)
dim=size(x,2);
o=sum(100*(x(2:dim)-(x(1:dim-1).^2)).^2+(x(1:dim-1)-1).^2);
end
% F6
function o = F6(x)
o=sum(abs((x+.5)).^2);
end
% F7
function o = F7(x)
dim=size(x,2);
o=sum([1:dim].*(x.^4))+rand;
end
% F8
function o = F8(x)
dim = size(x, 2);
o = sum([1:dim].*(x.^2));
end
% F9
function o = F9(x)
o=sum(abs(x.*sin(x)+0.1*x));
end
% F10
function o = F10(x)
dim = size(x, 2);
o = 0;
for i = 1:dim
o = o+abs(x(i))^(i+1);
end
end
% F11
function o = F11(x)
dim=size(x,2);
o = 0;
for i = 1:dim
o = o+(10^6)^((i-1)/(dim-1))*x(i)^2;
end
end
% F12
function o = F12(x)
dim = size(x, 2);
p = 0;
o = sum(x.^2);
for i = 1:dim
p = p+0.5*i*x(i);
end
o = o+p^2+p^4;
end
% F13
function o = F13(x)
o=sum(-x.*sin(sqrt(abs(x))));
end
% F14
function o = F14(x)
dim=size(x,2);
o=sum(x.^2-10*cos(2*pi.*x))+10*dim;
end
% F15
function o = F15(x)
dim=size(x,2);
o=-20*exp(-.2*sqrt(sum(x.^2)/dim))-exp(sum(cos(2*pi.*x))/dim)+20+exp(1);
end
% F16
function o = F16(x)
dim=size(x,2);
o=sum(x.^2)/4000-prod(cos(x./sqrt([1:dim])))+1;
end
% F17
function o = F17(x)
dim=size(x,2);
o=(pi/dim)*(10*((sin(pi*(1+(x(1)+1)/4)))^2)+sum((((x(1:dim-1)+1)./4).^2).*...
(1+10.*((sin(pi.*(1+(x(2:dim)+1)./4)))).^2))+((x(dim)+1)/4)^2)+sum(Ufun(x,10,100,4));
end
% F18
function o = F18(x)
dim=size(x,2);
o=.1*((sin(3*pi*x(1)))^2+sum((x(1:dim-1)-1).^2.*(1+(sin(3.*pi.*x(2:dim))).^2))+...
((x(dim)-1)^2)*(1+(sin(2*pi*x(dim)))^2))+sum(Ufun(x,5,100,4));
end
% F19
function o = F19(x)
o = 418.9829*size(x, 2)-sum(x.*sin(sqrt(abs(x))));
end
% F20
function o = F20(x)
aK=[.1957 .1947 .1735 .16 .0844 .0627 .0456 .0342 .0323 .0235 .0246];
bK=[.25 .5 1 2 4 6 8 10 12 14 16];bK=1./bK;
o=sum((aK-((x(1).*(bK.^2+x(2).*bK))./(bK.^2+x(3).*bK+x(4)))).^2);
end
% F21
function o = F21(x)
o = -(1+cos(12*sqrt(x(1)^2+x(2)^2)))/(0.5*(x(1)^2+x(2)^2)+2);
end
% F22
function o = F22(x)
o = 0.26*(x(1)^2+x(2)^2)-0.48*x(1)*x(2);
end
% F23
function o = F23(x)
o = 0.5+((sin(sqrt(x(1)^2+x(2)^2))^2)-0.5)/(1+0.001*(x(1)^2+x(2)^2)^2);
end
% F24
function o = F24(x)
aS=[-32 -16 0 16 32 -32 -16 0 16 32 -32 -16 0 16 32 -32 -16 0 16 32 -32 -16 0 16 32;,...
-32 -32 -32 -32 -32 -16 -16 -16 -16 -16 0 0 0 0 0 16 16 16 16 16 32 32 32 32 32];
for j=1:25
bS(j)=sum((x'-aS(:,j)).^6);
end
o=(1/500+sum(1./([1:25]+bS))).^(-1);
end
% F25
function o = F25(x)
aK=[.1957 .1947 .1735 .16 .0844 .0627 .0456 .0342 .0323 .0235 .0246];
bK=[.25 .5 1 2 4 6 8 10 12 14 16];bK=1./bK;
o=sum((aK-((x(1).*(bK.^2+x(2).*bK))./(bK.^2+x(3).*bK+x(4)))).^2);
end
% F26
function o = F26(x)
o=4*(x(1)^2)-2.1*(x(1)^4)+(x(1)^6)/3+x(1)*x(2)-4*(x(2)^2)+4*(x(2)^4);
end
% F27
function o = F27(x)
o=(x(2)-(x(1)^2)*5.1/(4*(pi^2))+5/pi*x(1)-6)^2+10*(1-1/(8*pi))*cos(x(1))+10;
end
% F28
function o = F28(x)
o=(1+(x(1)+x(2)+1)^2*(19-14*x(1)+3*(x(1)^2)-14*x(2)+6*x(1)*x(2)+3*x(2)^2))*...
(30+(2*x(1)-3*x(2))^2*(18-32*x(1)+12*(x(1)^2)+48*x(2)-36*x(1)*x(2)+27*(x(2)^2)));
end
% F29
function o = F29(x)
aH=[3 10 30;.1 10 35;3 10 30;.1 10 35];cH=[1 1.2 3 3.2];
pH=[.3689 .117 .2673;.4699 .4387 .747;.1091 .8732 .5547;.03815 .5743 .8828];
o=0;
for i=1:4
o=o-cH(i)*exp(-(sum(aH(i,:).*((x-pH(i,:)).^2))));
end
end
% F30
function o = F30(x)
aH=[10 3 17 3.5 1.7 8;.05 10 17 .1 8 14;3 3.5 1.7 10 17 8;17 8 .05 10 .1 14];
cH=[1 1.2 3 3.2];
pH=[.1312 .1696 .5569 .0124 .8283 .5886;.2329 .4135 .8307 .3736 .1004 .9991;...
.2348 .1415 .3522 .2883 .3047 .6650;.4047 .8828 .8732 .5743 .1091 .0381];
o=0;
for i=1:4
o=o-cH(i)*exp(-(sum(aH(i,:).*((x-pH(i,:)).^2))));
end
end
% F31
function o = F31(x)
aSH=[4 4 4 4;1 1 1 1;8 8 8 8;6 6 6 6;3 7 3 7;2 9 2 9;5 5 3 3;8 1 8 1;6 2 6 2;7 3.6 7 3.6];
cSH=[.1 .2 .2 .4 .4 .6 .3 .7 .5 .5];
o=0;
for i=1:5
o=o-((x-aSH(i,:))*(x-aSH(i,:))'+cSH(i))^(-1);
end
end
% F32
function o = F32(x)
aSH=[4 4 4 4;1 1 1 1;8 8 8 8;6 6 6 6;3 7 3 7;2 9 2 9;5 5 3 3;8 1 8 1;6 2 6 2;7 3.6 7 3.6];
cSH=[.1 .2 .2 .4 .4 .6 .3 .7 .5 .5];
o=0;
没有合适的资源?快使用搜索试试~ 我知道了~
【高创新】基于人工蜂群优化算法ABC-Transformer-BiLSTM实现故障识别Matlab实现.rar
共20个文件
m:15个
png:4个
xlsx:1个
1.该资源内容由用户上传,如若侵权请联系客服进行举报
2.虚拟产品一经售出概不退款(资源遇到问题,请及时私信上传者)
2.虚拟产品一经售出概不退款(资源遇到问题,请及时私信上传者)
版权申诉
0 下载量 69 浏览量
2024-09-18
20:55:44
上传
评论
收藏 157KB RAR 举报
温馨提示
1.版本:matlab2014/2019a/2024a 2.附赠案例数据可直接运行matlab程序。 3.代码特点:参数化编程、参数可方便更改、代码编程思路清晰、注释明细。 4.适用对象:计算机,电子信息工程、数学等专业的大学生课程设计、期末大作业和毕业设计。 替换数据可以直接使用,注释清楚,适合新手
资源推荐
资源详情
资源评论
收起资源包目录
【高创新】基于人工蜂群优化算法ABC-Transformer-BiLSTM实现故障识别Matlab实现.rar (20个子文件)
【高创新】基于人工蜂群优化算法ABC-Transformer-BiLSTM实现故障识别Matlab实现
calc_error.m 2KB
randSelection.m 538B
GSGenerate.m 659B
explosionSparksGenerate.m 730B
Bounds.m 158B
RouletteWheelSelection.m 133B
initialization.m 427B
Transformer.m 2KB
3.png 24KB
ABC.m 2KB
main.m 3KB
数据集.xlsx 73KB
1.png 20KB
Get_Functions_details.m 8KB
4.png 20KB
GenNewSol.m 970B
func_plot.m 3KB
FunRange.m 2KB
SpaceBound.m 179B
2.png 17KB
共 20 条
- 1
资源评论
matlab科研社
- 粉丝: 2w+
- 资源: 2041
上传资源 快速赚钱
- 我的内容管理 展开
- 我的资源 快来上传第一个资源
- 我的收益 登录查看自己的收益
- 我的积分 登录查看自己的积分
- 我的C币 登录后查看C币余额
- 我的收藏
- 我的下载
- 下载帮助
最新资源
资源上传下载、课程学习等过程中有任何疑问或建议,欢迎提出宝贵意见哦~我们会及时处理!
点击此处反馈
安全验证
文档复制为VIP权益,开通VIP直接复制
信息提交成功