<!-- udacimak v1.2.1 -->
<!DOCTYPE html>
<html lang="en">
<head>
<meta charset="UTF-8">
<meta name="viewport" content="width=device-width, initial-scale=1.0">
<meta http-equiv="X-UA-Compatible" content="ie=edge">
<title>Project instructions Workspaces</title>
<link rel="stylesheet" href="../assets/css/bootstrap.min.css">
<link rel="stylesheet" href="../assets/css/plyr.css">
<link rel="stylesheet" href="../assets/css/katex.min.css">
<link rel="stylesheet" href="../assets/css/jquery.mCustomScrollbar.min.css">
<link rel="stylesheet" href="../assets/css/styles.css">
<link rel="shortcut icon" type="image/png" href="../assets/img/udacimak.png" />
</head>
<body>
<div class="wrapper">
<nav id="sidebar">
<div class="sidebar-header">
<h3>Finding Lane Lines Project</h3>
</div>
<ul class="sidebar-list list-unstyled CTAs">
<li>
<a href="../index.html" class="article">Back to Home</a>
</li>
</ul>
<ul class="sidebar-list list-unstyled components">
<li class="">
<a href="01. Building a Portfolio.html">01. Building a Portfolio</a>
</li>
<li class="">
<a href="02. Project Intro.html">02. Project Intro</a>
</li>
<li class="">
<a href="03. Project Expectations.html">03. Project Expectations</a>
</li>
<li class="">
<a href="04. Project instructions Workspaces.html">04. Project instructions Workspaces</a>
</li>
<li class="">
<a href="05. Finding Lane Lines.html">05. Finding Lane Lines</a>
</li>
<li class="">
<a href="06. Project instructions Local Setup.html">06. Project instructions Local Setup</a>
</li>
<li class="">
<a href="07. Starter Kit Installation.html">07. Starter Kit Installation</a>
</li>
<li class="">
<a href="08. Run Some Code!.html">08. Run Some Code!</a>
</li>
<li class="">
<a href="Project Description - Finding Lane Lines on the Road.html">Project Description - Finding Lane Lines on the Road</a>
</li>
<li class="">
<a href="Project Rubric - Finding Lane Lines on the Road.html">Project Rubric - Finding Lane Lines on the Road</a>
</li>
</ul>
<ul class="sidebar-list list-unstyled CTAs">
<li>
<a href="../index.html" class="article">Back to Home</a>
</li>
</ul>
</nav>
<div id="content">
<header class="container-fluild header">
<div class="container">
<div class="row">
<div class="col-12">
<div class="align-items-middle">
<button type="button" id="sidebarCollapse" class="btn btn-toggle-sidebar">
<div></div>
<div></div>
<div></div>
</button>
<h1 style="display: inline-block">04. Project instructions Workspaces</h1>
</div>
</div>
</div>
</div>
</header>
<main class="container">
<div class="row">
<div class="col-12">
<div class="ud-atom">
<h3></h3>
<div>
<h2 id="workspace-users-">Workspace Users :</h2>
<p>This <strong>workspace</strong> is designed to be a simple, easy to use environment in which you can code and run the <br />
Finding Lane Lines project. </p>
<p><strong>Note:</strong> If you prefer to run the project in your local setup, navigate to the <strong>Project instructions Local Setup</strong> lesson.</p>
<h3 id="intro">Intro</h3>
<p>In this project, you will be writing code to identify lane lines on the road, first in an image, and later in a video stream (really just a series of images). To complete this project you will use the tools you learned about in the lesson, and build upon them. </p>
<p>Your first goal is to write code including a series of steps (pipeline) that identify and draw the lane lines on a few test images. Once you can successfully identify the lines in an image, you can cut and paste your code into the block provided to run on a video stream. </p>
<p>You will then refine your pipeline with parameter tuning and by averaging and extrapolating the lines. </p>
<p>Finally, you'll make a brief writeup report. The workspace github repository has a <code>writeup_template.md</code> that can be used as a guide.</p>
<p>Have a look at the video clip called "P1_example.mp4" in the repository to see an example of what your final output should look like. Two videos are provided for you to run your code on. These are called "solidWhiteRight.mp4" and solidYellowLeft.mp4". </p>
<p>For tips on workspace use, please review the <a href="https://classroom.udacity.com/nanodegrees/nd013/parts/edf28735-efc1-4b99-8fbb-ba9c432239c8/modules/c773ee09-4a0d-445d-b6af-0739e6653f18/lessons/ec7a3d6d-24a6-4dad-9f5c-aacd29763e0b/concepts/54aad67c-95ab-44c0-b16e-f92dd377137c?contentVersion=2.0.0&contentLocale=en-us" target="_blank">Workspaces lesson.</a></p>
<h2 id="accessing-and-using-the-workspace">Accessing and using the workspace:</h2>
<ul>
<li>Go to the workspace node and the project JUPYTER notebook will automatically load</li>
<li>Complete the project using the instructions in the notebook</li>
<li>The project repo is already in the workspace. To see other files in the repo click on the JUPYTER icon. This will expose the root directory. From there click on the project folder.</li>
</ul>
<h2 id="commit-to-github">Commit to GitHub</h2>
<p>Students are highly encouraged to commit their project to a GitHub repo. To do this, you must change the upstream of the current repository and add your credentials. We have supplied a bash script to help you do this. Please open up a terminal, navigate to the project repository, and enter: <code>./set_git.sh</code>, then follow the prompts. This will set the upstream remote to your own repository and add your email and username to the git configuration. At this time we are not configuring passwords, so you will need to enter your username and password for each push. Since credentials are not persistent, it will be necessary to run this script each time you open, refresh, or reset the workspace.</p>
<h2 id="things-to-keep-in-mind">Things to keep in mind:</h2>
<ul>
<li>If you leave your workspace unattended, it will time out and need to be refreshed. Your most recent work will be restored, but the list of open files or any running shell sessions will not be restored.</li>
</ul>
</div>
</div>
<div class="divider"></div><div class="ud-atom">
<h3></h3>
<div>
<h2 id="evaluation">Evaluation</h2>
<p>Once you have completed your project, use the <a href="https://review.udacity.com/#!/rubrics/1967/view" target="_blank"><strong>Project Rubric</strong></a> to review the project. If you have covered all of the points in the rubric, then you are ready to submit! If you see room for improvement in <strong>any</strong> category in which you do not meet specifications, keep working! </p>
<p>Your project will be evaluated by a Udacity reviewer according to the same <a href="https://review.udacity.com/#!/rubrics/1967/view" target="_blank"><strong>Project Rubric</strong></a>. Your project must "meet specifications" in each category in order for your submission to pass.</p>
<h3 id="ready-to-submit-your-project">Ready to submit your project?</h3>
<p>Make sure your workspace contains at least :</p>
<ul>
<li>Jupyter Notebook with your project code</li>
<li>writeup report (md or pdf file)</li>
</ul>
<p>Click on the <strong>Submit Project</strong> button and follow the instructions to submit!</p>
</div>
</div>
<div class="divider"></div><div class="ud-atom">
<h3></h3>
<div>
<h2 id="project-support">Project Support</h2>
<p>If you are stuck or having difficulties with the project, don't lose hope! Remember to ask (and answer!) questions on <a href="https://knowledge.udacity.com" target="_blank">Knowledge</a> tagged with the project name, and reach out to you
Part 01-Module 01-Lesson 04-Finding Lane Lines Project
需积分: 0 149 浏览量
更新于2023-12-24
收藏 12.75MB ZIP 举报
在本项目"Part 01-Module 01-Lesson 04-Finding Lane Lines Project"中,我们探讨的是自动驾驶技术中的一个关键组件——车道线检测。车道线检测是自主车辆感知环境,确保安全行驶的重要一环。在这个课程中,Udacity提供了深入浅出的教学资源,帮助学员掌握这一核心技术。
车道线检测主要涉及以下几个方面:
1. 图像处理:我们需要对输入的视频或图像进行预处理,通常包括灰度化、平滑滤波(如高斯滤波)以及Canny边缘检测。灰度化将彩色图像转换为单色图像,简化后续处理;平滑滤波可以消除噪声,提高图像质量;Canny算法则用于检测图像中的显著边缘。
2. 线性变换与透视变换:为了使图像更适合分析,我们常常采用透视变换,将鸟瞰图转化为车辆前视图。这一步骤通常需要定义四个源点和四个目标点,以便正确地变换图像的几何结构。
3. 区域筛选:在进行边缘检测后,我们会设定一个感兴趣的区域(ROI),只关注图像中可能包含车道线的部分,从而减少计算量和误检。
4. 基于霍夫变换的直线检测:使用霍夫变换找到图像中的直线,这是识别车道线的关键步骤。霍夫变换可以从边缘像素投票得到直线参数(如斜率和截距),然后通过这些参数找到车道线。
5. 适应性和稳定性:考虑到道路条件的变化,车道线检测算法需要有一定的适应性和稳定性。这可能包括动态调整阈值、追踪前一帧的车道线位置或者结合滑动窗口方法来寻找最佳拟合线。
6. 结果整合:将检测到的车道线投影回原始图像,并叠加在图像上,以可视化结果。同时,车道线信息可以用于车辆的路径规划和控制。
在"Finding Lane Lines Project"的课程资源中,学员可以通过实际编程练习来理解并实现这些概念,包括使用Python和OpenCV库。通过这个项目,学员不仅能够掌握车道线检测的基本原理,还能提升在实际问题中应用图像处理和机器学习技术的能力。
这个课程模块旨在为学员提供自动驾驶技术的基础,特别是视觉感知方面的关键技能。通过完成此项目,学员将能够为后续的定位、预测和控制等复杂任务打下坚实基础,进一步深入理解自动驾驶汽车的全面工作流程。
智能汽车人
- 粉丝: 1160
- 资源: 8
最新资源
- 新学期幼儿园班会家长会介绍模板.pptx
- STM32F401RCT6-RTOS-EXAMPLE12.rar
- 计算机网络技术978-7-115-48545-8习题答案
- 基于python的NBA球员数据可视化分析源码+答辩PPT(高分项目)
- service暴露应用
- 构建HTML/CSS/JavaScript跨年倒计时网页以增强节日互动性
- Python基础练习之词频统计
- linux常用命令大全常用.txt
- Python跨年基础练习之手机通讯录
- linux常用命令大全常用.txt
- linux常用命令大全常用.txt
- 基于python的NBA球员数据可视化分析源码+文档PPT
- 写频软件MD-760 v3.2.1(最新)
- Python跨年基础练习之新年成语接龙小游戏
- 云兴私有云大华存储部署
- API Spec 14A-2024 Subsurface Safety Valve and Annular Safety Valve Equipment.pdf