馃摎 This guide explains how to use **Weights & Biases** (W&B) with YOLOv5 馃殌. UPDATED 29 September 2021.
* [About Weights & Biases](#about-weights-&-biases)
* [First-Time Setup](#first-time-setup)
* [Viewing runs](#viewing-runs)
* [Disabling wandb](#disabling-wandb)
* [Advanced Usage: Dataset Versioning and Evaluation](#advanced-usage)
* [Reports: Share your work with the world!](#reports)
## About Weights & Biases
Think of [W&B](https://wandb.ai/site?utm_campaign=repo_yolo_wandbtutorial) like GitHub for machine learning models. With a few lines of code, save everything you need to debug, compare and reproduce your models 鈥� architecture, hyperparameters, git commits, model weights, GPU usage, and even datasets and predictions.
Used by top researchers including teams at OpenAI, Lyft, Github, and MILA, W&B is part of the new standard of best practices for machine learning. How W&B can help you optimize your machine learning workflows:
* [Debug](https://wandb.ai/wandb/getting-started/reports/Visualize-Debug-Machine-Learning-Models--VmlldzoyNzY5MDk#Free-2) model performance in real time
* [GPU usage](https://wandb.ai/wandb/getting-started/reports/Visualize-Debug-Machine-Learning-Models--VmlldzoyNzY5MDk#System-4) visualized automatically
* [Custom charts](https://wandb.ai/wandb/customizable-charts/reports/Powerful-Custom-Charts-To-Debug-Model-Peformance--VmlldzoyNzY4ODI) for powerful, extensible visualization
* [Share insights](https://wandb.ai/wandb/getting-started/reports/Visualize-Debug-Machine-Learning-Models--VmlldzoyNzY5MDk#Share-8) interactively with collaborators
* [Optimize hyperparameters](https://docs.wandb.com/sweeps) efficiently
* [Track](https://docs.wandb.com/artifacts) datasets, pipelines, and production models
## First-Time Setup
<details open>
<summary> Toggle Details </summary>
When you first train, W&B will prompt you to create a new account and will generate an **API key** for you. If you are an existing user you can retrieve your key from https://wandb.ai/authorize. This key is used to tell W&B where to log your data. You only need to supply your key once, and then it is remembered on the same device.
W&B will create a cloud **project** (default is 'YOLOv5') for your training runs, and each new training run will be provided a unique run **name** within that project as project/name. You can also manually set your project and run name as:
```shell
$ python train.py --project ... --name ...
```
YOLOv5 notebook example: <a href="https://colab.research.google.com/github/ultralytics/yolov5/blob/master/tutorial.ipynb"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"></a> <a href="https://www.kaggle.com/ultralytics/yolov5"><img src="https://kaggle.com/static/images/open-in-kaggle.svg" alt="Open In Kaggle"></a>
<img width="960" alt="Screen Shot 2021-09-29 at 10 23 13 PM" src="https://user-images.githubusercontent.com/26833433/135392431-1ab7920a-c49d-450a-b0b0-0c86ec86100e.png">
</details>
## Viewing Runs
<details open>
<summary> Toggle Details </summary>
Run information streams from your environment to the W&B cloud console as you train. This allows you to monitor and even cancel runs in <b>realtime</b> . All important information is logged:
* Training & Validation losses
* Metrics: Precision, Recall, mAP@0.5, mAP@0.5:0.95
* Learning Rate over time
* A bounding box debugging panel, showing the training progress over time
* GPU: Type, **GPU Utilization**, power, temperature, **CUDA memory usage**
* System: Disk I/0, CPU utilization, RAM memory usage
* Your trained model as W&B Artifact
* Environment: OS and Python types, Git repository and state, **training command**
<p align="center"><img width="900" alt="Weights & Biases dashboard" src="https://user-images.githubusercontent.com/26833433/135390767-c28b050f-8455-4004-adb0-3b730386e2b2.png"></p>
</details>
## Disabling wandb
* training after running `wandb disabled` inside that directory creates no wandb run
![Screenshot (84)](https://user-images.githubusercontent.com/15766192/143441777-c780bdd7-7cb4-4404-9559-b4316030a985.png)
* To enable wandb again, run `wandb online`
![Screenshot (85)](https://user-images.githubusercontent.com/15766192/143441866-7191b2cb-22f0-4e0f-ae64-2dc47dc13078.png)
## Advanced Usage
You can leverage W&B artifacts and Tables integration to easily visualize and manage your datasets, models and training evaluations. Here are some quick examples to get you started.
<details open>
<h3> 1: Train and Log Evaluation simultaneousy </h3>
This is an extension of the previous section, but it'll also training after uploading the dataset. <b> This also evaluation Table</b>
Evaluation table compares your predictions and ground truths across the validation set for each epoch. It uses the references to the already uploaded datasets,
so no images will be uploaded from your system more than once.
<details open>
<summary> <b>Usage</b> </summary>
<b>Code</b> <code> $ python train.py --upload_data val</code>
![Screenshot from 2021-11-21 17-40-06](https://user-images.githubusercontent.com/15766192/142761183-c1696d8c-3f38-45ab-991a-bb0dfd98ae7d.png)
</details>
<h3>2. Visualize and Version Datasets</h3>
Log, visualize, dynamically query, and understand your data with <a href='https://docs.wandb.ai/guides/data-vis/tables'>W&B Tables</a>. You can use the following command to log your dataset as a W&B Table. This will generate a <code>{dataset}_wandb.yaml</code> file which can be used to train from dataset artifact.
<details>
<summary> <b>Usage</b> </summary>
<b>Code</b> <code> $ python utils/logger/wandb/log_dataset.py --project ... --name ... --data .. </code>
![Screenshot (64)](https://user-images.githubusercontent.com/15766192/128486078-d8433890-98a3-4d12-8986-b6c0e3fc64b9.png)
</details>
<h3> 3: Train using dataset artifact </h3>
When you upload a dataset as described in the first section, you get a new config file with an added `_wandb` to its name. This file contains the information that
can be used to train a model directly from the dataset artifact. <b> This also logs evaluation </b>
<details>
<summary> <b>Usage</b> </summary>
<b>Code</b> <code> $ python train.py --data {data}_wandb.yaml </code>
![Screenshot (72)](https://user-images.githubusercontent.com/15766192/128979739-4cf63aeb-a76f-483f-8861-1c0100b938a5.png)
</details>
<h3> 4: Save model checkpoints as artifacts </h3>
To enable saving and versioning checkpoints of your experiment, pass `--save_period n` with the base cammand, where `n` represents checkpoint interval.
You can also log both the dataset and model checkpoints simultaneously. If not passed, only the final model will be logged
<details>
<summary> <b>Usage</b> </summary>
<b>Code</b> <code> $ python train.py --save_period 1 </code>
![Screenshot (68)](https://user-images.githubusercontent.com/15766192/128726138-ec6c1f60-639d-437d-b4ee-3acd9de47ef3.png)
</details>
</details>
<h3> 5: Resume runs from checkpoint artifacts. </h3>
Any run can be resumed using artifacts if the <code>--resume</code> argument starts with聽<code>wandb-artifact://</code>聽prefix followed by the run path, i.e,聽<code>wandb-artifact://username/project/runid </code>. This doesn't require the model checkpoint to be present on the local system.
<details>
<summary> <b>Usage</b> </summary>
<b>Code</b> <code> $ python train.py --resume wandb-artifact://{run_path} </code>
![Screenshot (70)](https://user-images.githubusercontent.com/15766192/128728988-4e84b355-6c87-41ae-a591-14aecf45343e.png)
</details>
<h3> 6: Resume runs from dataset artifact & checkpoint artifacts. </h3>
<b> Local dataset or model checkpoints are not required. This can be used to resume runs directly on a different device </b>
The syntax is same as the previous section, but you'll need to lof both the dataset and model checkpoints as artifacts, i.e, set bot <code>--upload_dataset<
没有合适的资源?快使用搜索试试~ 我知道了~
温馨提示
基于OpenCV的图像处理系统python实现源码+UI界面+项目说明文档(课程设计、整合常用图像处理方法和技术).zip 【实现功能】 文件操作 打开、关闭、保存一幅图像 亮度对比度调节 调整图像的亮度和对比度 几何变换 对图像放大、缩小、旋转、翻转 灰度变换 图像灰度化、图像反转、图像二值化 直方图处理 直方图均衡化和直方图规定化,以及直方图的绘制 加性噪声 高斯噪声、椒盐噪声以及随机噪声 平滑处理 均值滤波、中值滤波、高斯滤波以及双边滤波 锐化处理 选择不同的算子对图像进行锐化,包括 sobel 算子、robert 算子、prewitt 算子、laplacain 算子 频域滤波 高通滤波和低通滤波 边缘检测 选择 laplacian 算子、sobel 算子和 canny 算子进行边缘检测 目标检测 yolov5、人脸检测和图像分割
资源推荐
资源详情
资源评论
收起资源包目录
基于OpenCV的图像处理系统python实现源码+UI界面+项目说明文档(课程设计、整合常用图像处理方法和技术).zip (182个子文件)
lena512gray.bmp 768KB
lena256gray.bmp 192KB
lena.bmp 65KB
lena128gray.bmp 48KB
Dockerfile 821B
.gitignore 1KB
.gitignore 17B
coast.jpeg 2.3MB
coast.jpeg 2.3MB
coast.jpeg 1.73MB
street.jpeg 187KB
street.jpeg 165KB
street.jpeg 122KB
Monterey.jpg 3.93MB
impulse.jpg 3.58MB
impulse.jpg 3.58MB
gaussian.jpg 2.77MB
gaussian.jpg 2.76MB
impulse.jpg 1.87MB
flower.jpg 1.79MB
flower.jpg 1.78MB
gaussian.jpg 1.39MB
lake.jpg 1.14MB
flower.jpg 996KB
campus.jpg 840KB
campus.jpg 835KB
campus2.jpg 799KB
campus2.jpg 794KB
night.jpg 706KB
lake2.jpg 528KB
bus.jpg 482KB
bus.jpg 476KB
bus.jpg 476KB
campus.jpg 452KB
2.jpg 432KB
campus3.jpg 432KB
1.jpg 430KB
campus2.jpg 430KB
调节亮度对比度.jpg 400KB
dog.jpg 292KB
3.jpg 290KB
airplane.jpg 252KB
night2.jpg 219KB
dog.jpg 217KB
dog.jpg 216KB
untitled.jpg 181KB
airplane.jpg 172KB
airplane.jpg 171KB
sport.jpg 145KB
sport.jpg 126KB
sport.jpg 116KB
bird.jpg 98KB
lena.jpg 64KB
bird.jpg 61KB
bird.jpg 58KB
lena.jpg 57KB
test.jpg 47KB
lena.jpg 47KB
lena.jpg 47KB
coins.jpg 25KB
coins.jpg 25KB
coins.jpg 16KB
weather.jpg 12KB
README.md 11KB
README.md 2KB
项目说明.md 1KB
README.md 29B
deeplab1.png 2.37MB
deeplab1.png 1.97MB
deeplab1.png 1.95MB
lena.png 512KB
主界面.png 444KB
yolov5s.pt 14.02MB
res_rc.py 16.25MB
datasets.py 44KB
general.py 34KB
common.py 29KB
wandb_utils.py 26KB
ImageProcessing.py 25KB
tf.py 20KB
plots.py 20KB
mainwindow.py 19KB
yolo.py 15KB
metrics.py 14KB
torch_utils.py 13KB
detect.py 12KB
augmentations.py 11KB
loss.py 9KB
autoanchor.py 7KB
__init__.py 7KB
downloads.py 6KB
experimental.py 4KB
activations.py 4KB
callbacks.py 2KB
autobatch.py 2KB
benchmark.py 1KB
resume.py 1KB
sweep.py 1KB
restapi.py 1KB
log_dataset.py 1KB
共 182 条
- 1
- 2
onnx
- 粉丝: 9977
- 资源: 5626
上传资源 快速赚钱
- 我的内容管理 展开
- 我的资源 快来上传第一个资源
- 我的收益 登录查看自己的收益
- 我的积分 登录查看自己的积分
- 我的C币 登录后查看C币余额
- 我的收藏
- 我的下载
- 下载帮助
最新资源
- screenrecorder-20241221-204839.mp4
- Screenshot_20241221-204051.png
- 自考计算机网络原理04741真题及答案2018-2020
- YOLO算法-垃圾箱检测数据集-214张图像带标签-垃圾桶.zip
- Hive存储压缩与Hive3性能优化-必看文档
- YOLO算法-施工管理数据集-7164张图像带标签-安全帽-装载机-挖掘机-平地机-移动式起重机-反光背心-工人-推土机-滚筒-哑巴卡车.zip
- YOLO算法-俯视视角草原绵羊检测数据集-4133张图像带标签-羊.zip
- YOLO算法-挖掘机数据集-2656张图像带标签-自卸卡车-挖掘机-轮式装载机.zip
- YOLO算法-火车-轨道-手推车数据集-3793张图像带标签-火车-轨道-手推车.zip
- YOLO算法-垃圾数据集-6561张图像带标签-纸张-混合的-餐厅快餐.zip
- 技术报告:大型语言模型在压力下战略欺骗用户的行为研究
- YOLO算法-水泥路面裂纹检测数据集-5005张图像带标签-裂纹.zip
- YOLO算法-垃圾数据集-568张图像带标签-纸张-纸箱-瓶子.zip
- YOLO算法-施工设备数据集-2000张图像带标签-装载机-挖掘机-平地机-移动式起重机-推土机-滚筒-哑巴卡车.zip
- 防火墙系统项目源代码全套技术资料.zip
- 西门子V90效率倍增-伺服驱动功能库详解-循环通信库 DRIVELib.mp4
资源上传下载、课程学习等过程中有任何疑问或建议,欢迎提出宝贵意见哦~我们会及时处理!
点击此处反馈
安全验证
文档复制为VIP权益,开通VIP直接复制
信息提交成功
- 1
- 2
- 3
前往页