# Multi-Object Tracking with Ultralytics YOLO
<img width="1024" src="https://user-images.githubusercontent.com/26833433/243418637-1d6250fd-1515-4c10-a844-a32818ae6d46.png" alt="YOLOv8 trackers visualization">
Object tracking in the realm of video analytics is a critical task that not only identifies the location and class of objects within the frame but also maintains a unique ID for each detected object as the video progresses. The applications are limitless—ranging from surveillance and security to real-time sports analytics.
## Why Choose Ultralytics YOLO for Object Tracking?
The output from Ultralytics trackers is consistent with standard object detection but has the added value of object IDs. This makes it easy to track objects in video streams and perform subsequent analytics. Here's why you should consider using Ultralytics YOLO for your object tracking needs:
- **Efficiency:** Process video streams in real-time without compromising accuracy.
- **Flexibility:** Supports multiple tracking algorithms and configurations.
- **Ease of Use:** Simple Python API and CLI options for quick integration and deployment.
- **Customizability:** Easy to use with custom trained YOLO models, allowing integration into domain-specific applications.
**Video Tutorial:** [Object Detection and Tracking with Ultralytics YOLOv8](https://www.youtube.com/embed/hHyHmOtmEgs?si=VNZtXmm45Nb9s-N-).
## Features at a Glance
Ultralytics YOLO extends its object detection features to provide robust and versatile object tracking:
- **Real-Time Tracking:** Seamlessly track objects in high-frame-rate videos.
- **Multiple Tracker Support:** Choose from a variety of established tracking algorithms.
- **Customizable Tracker Configurations:** Tailor the tracking algorithm to meet specific requirements by adjusting various parameters.
## Available Trackers
Ultralytics YOLO supports the following tracking algorithms. They can be enabled by passing the relevant YAML configuration file such as `tracker=tracker_type.yaml`:
- [BoT-SORT](https://github.com/NirAharon/BoT-SORT) - Use `botsort.yaml` to enable this tracker.
- [ByteTrack](https://github.com/ifzhang/ByteTrack) - Use `bytetrack.yaml` to enable this tracker.
The default tracker is BoT-SORT.
## Tracking
To run the tracker on video streams, use a trained Detect, Segment or Pose model such as YOLOv8n, YOLOv8n-seg and YOLOv8n-pose.
#### Python
```python
from ultralytics import YOLO
# Load an official or custom model
model = YOLO("yolov8n.pt") # Load an official Detect model
model = YOLO("yolov8n-seg.pt") # Load an official Segment model
model = YOLO("yolov8n-pose.pt") # Load an official Pose model
model = YOLO("path/to/best.pt") # Load a custom trained model
# Perform tracking with the model
results = model.track(
source="https://youtu.be/LNwODJXcvt4", show=True
) # Tracking with default tracker
results = model.track(
source="https://youtu.be/LNwODJXcvt4", show=True, tracker="bytetrack.yaml"
) # Tracking with ByteTrack tracker
```
#### CLI
```bash
# Perform tracking with various models using the command line interface
yolo track model=yolov8n.pt source="https://youtu.be/LNwODJXcvt4" # Official Detect model
yolo track model=yolov8n-seg.pt source="https://youtu.be/LNwODJXcvt4" # Official Segment model
yolo track model=yolov8n-pose.pt source="https://youtu.be/LNwODJXcvt4" # Official Pose model
yolo track model=path/to/best.pt source="https://youtu.be/LNwODJXcvt4" # Custom trained model
# Track using ByteTrack tracker
yolo track model=path/to/best.pt tracker="bytetrack.yaml"
```
As can be seen in the above usage, tracking is available for all Detect, Segment and Pose models run on videos or streaming sources.
## Configuration
### Tracking Arguments
Tracking configuration shares properties with Predict mode, such as `conf`, `iou`, and `show`. For further configurations, refer to the [Predict](https://docs.ultralytics.com/modes/predict/) model page.
#### Python
```python
from ultralytics import YOLO
# Configure the tracking parameters and run the tracker
model = YOLO("yolov8n.pt")
results = model.track(
source="https://youtu.be/LNwODJXcvt4", conf=0.3, iou=0.5, show=True
)
```
#### CLI
```bash
# Configure tracking parameters and run the tracker using the command line interface
yolo track model=yolov8n.pt source="https://youtu.be/LNwODJXcvt4" conf=0.3, iou=0.5 show
```
### Tracker Selection
Ultralytics also allows you to use a modified tracker configuration file. To do this, simply make a copy of a tracker config file (for example, `custom_tracker.yaml`) from [ultralytics/cfg/trackers](https://github.com/ultralytics/ultralytics/tree/main/ultralytics/cfg/trackers) and modify any configurations (except the `tracker_type`) as per your needs.
#### Python
```python
from ultralytics import YOLO
# Load the model and run the tracker with a custom configuration file
model = YOLO("yolov8n.pt")
results = model.track(
source="https://youtu.be/LNwODJXcvt4", tracker="custom_tracker.yaml"
)
```
#### CLI
```bash
# Load the model and run the tracker with a custom configuration file using the command line interface
yolo track model=yolov8n.pt source="https://youtu.be/LNwODJXcvt4" tracker='custom_tracker.yaml'
```
For a comprehensive list of tracking arguments, refer to the [ultralytics/cfg/trackers](https://github.com/ultralytics/ultralytics/tree/main/ultralytics/cfg/trackers) page.
## Python Examples
### Persisting Tracks Loop
Here is a Python script using OpenCV (`cv2`) and YOLOv8 to run object tracking on video frames. This script still assumes you have already installed the necessary packages (`opencv-python` and `ultralytics`). The `persist=True` argument tells the tracker than the current image or frame is the next in a sequence and to expect tracks from the previous image in the current image.
#### Python
```python
import cv2
from ultralytics import YOLO
# Load the YOLOv8 model
model = YOLO("yolov8n.pt")
# Open the video file
video_path = "path/to/video.mp4"
cap = cv2.VideoCapture(video_path)
# Loop through the video frames
while cap.isOpened():
# Read a frame from the video
success, frame = cap.read()
if success:
# Run YOLOv8 tracking on the frame, persisting tracks between frames
results = model.track(frame, persist=True)
# Visualize the results on the frame
annotated_frame = results[0].plot()
# Display the annotated frame
cv2.imshow("YOLOv8 Tracking", annotated_frame)
# Break the loop if 'q' is pressed
if cv2.waitKey(1) & 0xFF == ord("q"):
break
else:
# Break the loop if the end of the video is reached
break
# Release the video capture object and close the display window
cap.release()
cv2.destroyAllWindows()
```
Please note the change from `model(frame)` to `model.track(frame)`, which enables object tracking instead of simple detection. This modified script will run the tracker on each frame of the video, visualize the results, and display them in a window. The loop can be exited by pressing 'q'.
### Plotting Tracks Over Time
Visualizing object tracks over consecutive frames can provide valuable insights into the movement patterns and behavior of detected objects within a video. With Ultralytics YOLOv8, plotting these tracks is a seamless and efficient process.
In the following example, we demonstrate how to utilize YOLOv8's tracking capabilities to plot the movement of detected objects across multiple video frames. This script involves opening a video file, reading it frame by frame, and utilizing the YOLO model to identify and track various objects. By retaining the center points of the detected bounding boxes and connecting them, we can draw lines that represent the paths followed by the tracked objects.
#### Python
```python
from collections import defaultdict
import cv2
import numpy as np
from ultralytics import YOLO
# Load the YOLOv8 model
model = YOLO("y
没有合适的资源?快使用搜索试试~ 我知道了~
温馨提示
本资源配套对应的视频教程和图文教程,手把手教你使用YOLOV10做海上船只红外目标检测的训练、测试和界面封装,包含了YOLOV10原理的解析、处理好的训练集和测试集、训练和测试的代码以及训练好的模型,并封装为了图形化界面,只需点击上传按钮上传图像即可完成海上红外图像的预测。 在这里,我们用一个红外海洋目标检测的数据集,里面包含了7类海洋目标 `['liner', 'sailboat', 'warship', 'canoe', 'bulk carrier', 'container ship', 'fishing boat']` YOLOv10模型于24年5月份正式提出,对过去YOLOs的结构设计、优化目标和数据增强策略进行了深入的了解和探索,并对YOLO模型中的各个组件进行了rethink,从后处理和模型结构入手进行了新的设计,在速度和精度上进行提升。 博客地址为:https://blog.csdn.net/ECHOSON/article/details/139223999
资源推荐
资源详情
资源评论
收起资源包目录
YOLOv10海上红外目标检测+代码+模型+系统界面+教学视频.zip (825个子文件)
events.out.tfevents.1716744510.autodl-container-144441acdb-57ab92d7.1657.0 92KB
events.out.tfevents.1716756718.autodl-container-144441acdb-57ab92d7.1657.1 273KB
events.out.tfevents.1716767608.autodl-container-144441acdb-57ab92d7.1657.2 227KB
main.cc 10KB
CNAME 21B
inference.cpp 13KB
inference.cpp 6KB
main.cpp 5KB
main.cpp 2KB
style.css 1KB
yolov10s.csv 235KB
yolov10m.csv 235KB
yolov10b.csv 235KB
yolov10x.csv 235KB
yolov10n.csv 235KB
yolov10l.csv 235KB
results.csv 47KB
results.csv 33KB
results.csv 674B
Dockerfile 4KB
Dockerfile-arm64 2KB
Dockerfile-conda 2KB
Dockerfile-cpu 3KB
Dockerfile-jetson 2KB
Dockerfile-python 2KB
Dockerfile-runner 2KB
.gitignore 2KB
.gitignore 50B
inference.h 2KB
inference.h 2KB
comments.html 2KB
source-file.html 858B
main.html 439B
favicon.ico 9KB
yolov10-main.iml 600B
tutorial.ipynb 35KB
explorer.ipynb 22KB
object_tracking.ipynb 8KB
object_counting.ipynb 6KB
heatmaps.ipynb 6KB
hub.ipynb 4KB
logo.jpeg 33KB
tmp_upload.jpeg 21KB
bus.jpg 476KB
train_batch2.jpg 371KB
train_batch2.jpg 366KB
train_batch1.jpg 355KB
train_batch1.jpg 354KB
train_batch0.jpg 352KB
train_batch0.jpg 351KB
train_batch33120.jpg 345KB
train_batch33120.jpg 345KB
train_batch33122.jpg 324KB
train_batch33122.jpg 324KB
train_batch33121.jpg 319KB
train_batch33121.jpg 319KB
val_batch1_pred.jpg 265KB
val_batch1_pred.jpg 265KB
val_batch2_pred.jpg 261KB
val_batch1_labels.jpg 261KB
val_batch1_labels.jpg 261KB
val_batch2_labels.jpg 258KB
val_batch1_pred.jpg 250KB
val_batch1_labels.jpg 245KB
labels_correlogram (2).jpg 244KB
labels_correlogram.jpg 244KB
labels_correlogram.jpg 244KB
labels_correlogram.jpg 244KB
labels_correlogram.jpg 244KB
val_batch2_pred.jpg 244KB
val_batch0_pred.jpg 244KB
val_batch0_pred.jpg 243KB
val_batch0_pred.jpg 242KB
val_batch2_pred.jpg 239KB
val_batch0_labels.jpg 235KB
val_batch0_labels.jpg 235KB
val_batch2_labels.jpg 233KB
val_batch2_labels.jpg 233KB
val_batch0_labels.jpg 233KB
val_batch0_pred.jpg 192KB
val_batch2_labels.jpg 184KB
val_batch0_labels.jpg 184KB
labels (2).jpg 181KB
labels.jpg 181KB
labels.jpg 181KB
labels.jpg 180KB
val_batch2_pred.jpg 176KB
val_batch1_pred.jpg 171KB
val_batch1_labels.jpg 164KB
train_batch0.jpg 155KB
bus.jpg 134KB
train_batch2.jpg 132KB
train_batch1.jpg 131KB
single_result.jpg 54KB
single_result_vid.jpg 52KB
zidane.jpg 49KB
upload_show_result.jpg 48KB
zhu.jpg 38KB
right.jpg 27KB
left.jpg 27KB
共 825 条
- 1
- 2
- 3
- 4
- 5
- 6
- 9
肆十二
- 粉丝: 2w+
- 资源: 45
上传资源 快速赚钱
- 我的内容管理 展开
- 我的资源 快来上传第一个资源
- 我的收益 登录查看自己的收益
- 我的积分 登录查看自己的积分
- 我的C币 登录后查看C币余额
- 我的收藏
- 我的下载
- 下载帮助
最新资源
- 基于单片机的红外检测及语音响应系统 本设计是基于单片机的红外检测及语音响应系统,主要是为了应用于车站出入站口的温度测量 选择S
- 燃料电池仿真模型燃料电池仿真模型,本模型基于Cruise软件和 Simulink软件共同搭建完成,并基于实际项目搭建,本资料包包
- 基于python的爬虫框架scrapy+Hadoop大数据实现招聘需求分析项目源码(毕业设计)
- 嵌入式软件设计方案技术方案
- 操作系统,语言,思维导图
- 考虑过网费用分摊的多产消者点对点能源交易分布式优化 摘要:代码主要做的是配电网中产消者点对点交易相关研究,配网中的卖方和买方通过
- retouch_2024091516373231.jpg
- Android studio源码,记事本,可做备忘录 纯安卓项目本地数据库sqlite 功能:登陆注册 增删改 注销 项目包含
- 毕业设计基于scrapy和hadoop的招聘信息大数据处理项目源码.zip
- java写s7和plc通讯
资源上传下载、课程学习等过程中有任何疑问或建议,欢迎提出宝贵意见哦~我们会及时处理!
点击此处反馈
安全验证
文档复制为VIP权益,开通VIP直接复制
信息提交成功
- 1
- 2
- 3
前往页