# YOLOv9
Implementation of paper - [YOLOv9: Learning What You Want to Learn Using Programmable Gradient Information](https://arxiv.org/abs/2402.13616)
[![arxiv.org](http://img.shields.io/badge/cs.CV-arXiv%3A2402.13616-B31B1B.svg)](https://arxiv.org/abs/2402.13616)
[![Hugging Face Spaces](https://img.shields.io/badge/%F0%9F%A4%97%20Hugging%20Face-Spaces-blue)](https://huggingface.co/spaces/kadirnar/Yolov9)
[![Hugging Face Spaces](https://img.shields.io/badge/%F0%9F%A4%97%20Hugging%20Face-Spaces-blue)](https://huggingface.co/merve/yolov9)
[![Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/roboflow-ai/notebooks/blob/main/notebooks/train-yolov9-object-detection-on-custom-dataset.ipynb)
[![OpenCV](https://img.shields.io/badge/OpenCV-BlogPost-black?logo=opencv&labelColor=blue&color=black)](https://learnopencv.com/yolov9-advancing-the-yolo-legacy/)
<div align="center">
<a href="./">
<img src="./figure/performance.png" width="79%"/>
</a>
</div>
## Performance
MS COCO
| Model | Test Size | AP<sup>val</sup> | AP<sub>50</sub><sup>val</sup> | AP<sub>75</sub><sup>val</sup> | Param. | FLOPs |
| :-- | :-: | :-: | :-: | :-: | :-: | :-: |
| [**YOLOv9-T**]() | 640 | **38.3%** | **53.1%** | **41.3%** | **2.0M** | **7.7G** |
| [**YOLOv9-S**]() | 640 | **46.8%** | **63.4%** | **50.7%** | **7.1M** | **26.4G** |
| [**YOLOv9-M**]() | 640 | **51.4%** | **68.1%** | **56.1%** | **20.0M** | **76.3G** |
| [**YOLOv9-C**](https://github.com/WongKinYiu/yolov9/releases/download/v0.1/yolov9-c-converted.pt) | 640 | **53.0%** | **70.2%** | **57.8%** | **25.3M** | **102.1G** |
| [**YOLOv9-E**](https://github.com/WongKinYiu/yolov9/releases/download/v0.1/yolov9-e-converted.pt) | 640 | **55.6%** | **72.8%** | **60.6%** | **57.3M** | **189.0G** |
<!-- | [**YOLOv9 (ReLU)**]() | 640 | **51.9%** | **69.1%** | **56.5%** | **25.3M** | **102.1G** | -->
<!-- tiny, small, and medium models will be released after the paper be accepted and published. -->
## Useful Links
<details><summary> <b>Expand</b> </summary>
Custom training: https://github.com/WongKinYiu/yolov9/issues/30#issuecomment-1960955297
ONNX export: https://github.com/WongKinYiu/yolov9/issues/2#issuecomment-1960519506 https://github.com/WongKinYiu/yolov9/issues/40#issue-2150697688 https://github.com/WongKinYiu/yolov9/issues/130#issue-2162045461
ONNX export for segmentation: https://github.com/WongKinYiu/yolov9/issues/260#issue-2191162150
TensorRT inference: https://github.com/WongKinYiu/yolov9/issues/143#issuecomment-1975049660 https://github.com/WongKinYiu/yolov9/issues/34#issue-2150393690 https://github.com/WongKinYiu/yolov9/issues/79#issue-2153547004 https://github.com/WongKinYiu/yolov9/issues/143#issue-2164002309
QAT TensorRT: https://github.com/WongKinYiu/yolov9/issues/327#issue-2229284136 https://github.com/WongKinYiu/yolov9/issues/253#issue-2189520073
TFLite: https://github.com/WongKinYiu/yolov9/issues/374#issuecomment-2065751706
OpenVINO: https://github.com/WongKinYiu/yolov9/issues/164#issue-2168540003
C# ONNX inference: https://github.com/WongKinYiu/yolov9/issues/95#issue-2155974619
C# OpenVINO inference: https://github.com/WongKinYiu/yolov9/issues/95#issuecomment-1968131244
OpenCV: https://github.com/WongKinYiu/yolov9/issues/113#issuecomment-1971327672
Hugging Face demo: https://github.com/WongKinYiu/yolov9/issues/45#issuecomment-1961496943
CoLab demo: https://github.com/WongKinYiu/yolov9/pull/18
ONNXSlim export: https://github.com/WongKinYiu/yolov9/pull/37
YOLOv9 ROS: https://github.com/WongKinYiu/yolov9/issues/144#issue-2164210644
YOLOv9 ROS TensorRT: https://github.com/WongKinYiu/yolov9/issues/145#issue-2164218595
YOLOv9 Julia: https://github.com/WongKinYiu/yolov9/issues/141#issuecomment-1973710107
YOLOv9 MLX: https://github.com/WongKinYiu/yolov9/issues/258#issue-2190586540
YOLOv9 StrongSORT with OSNet: https://github.com/WongKinYiu/yolov9/issues/299#issue-2212093340
YOLOv9 ByteTrack: https://github.com/WongKinYiu/yolov9/issues/78#issue-2153512879
YOLOv9 DeepSORT: https://github.com/WongKinYiu/yolov9/issues/98#issue-2156172319
YOLOv9 counting: https://github.com/WongKinYiu/yolov9/issues/84#issue-2153904804
YOLOv9 face detection: https://github.com/WongKinYiu/yolov9/issues/121#issue-2160218766
YOLOv9 segmentation onnxruntime: https://github.com/WongKinYiu/yolov9/issues/151#issue-2165667350
Comet logging: https://github.com/WongKinYiu/yolov9/pull/110
MLflow logging: https://github.com/WongKinYiu/yolov9/pull/87
AnyLabeling tool: https://github.com/WongKinYiu/yolov9/issues/48#issue-2152139662
AX650N deploy: https://github.com/WongKinYiu/yolov9/issues/96#issue-2156115760
Conda environment: https://github.com/WongKinYiu/yolov9/pull/93
AutoDL docker environment: https://github.com/WongKinYiu/yolov9/issues/112#issue-2158203480
</details>
## Installation
Docker environment (recommended)
<details><summary> <b>Expand</b> </summary>
``` shell
# create the docker container, you can change the share memory size if you have more.
nvidia-docker run --name yolov9 -it -v your_coco_path/:/coco/ -v your_code_path/:/yolov9 --shm-size=64g nvcr.io/nvidia/pytorch:21.11-py3
# apt install required packages
apt update
apt install -y zip htop screen libgl1-mesa-glx
# pip install required packages
pip install seaborn thop
# go to code folder
cd /yolov9
```
</details>
## Evaluation
[`yolov9-c-converted.pt`](https://github.com/WongKinYiu/yolov9/releases/download/v0.1/yolov9-c-converted.pt) [`yolov9-e-converted.pt`](https://github.com/WongKinYiu/yolov9/releases/download/v0.1/yolov9-e-converted.pt) [`yolov9-c.pt`](https://github.com/WongKinYiu/yolov9/releases/download/v0.1/yolov9-c.pt) [`yolov9-e.pt`](https://github.com/WongKinYiu/yolov9/releases/download/v0.1/yolov9-e.pt) [`gelan-c.pt`](https://github.com/WongKinYiu/yolov9/releases/download/v0.1/gelan-c.pt) [`gelan-e.pt`](https://github.com/WongKinYiu/yolov9/releases/download/v0.1/gelan-e.pt)
``` shell
# evaluate converted yolov9 models
python val.py --data data/coco.yaml --img 640 --batch 32 --conf 0.001 --iou 0.7 --device 0 --weights './yolov9-c-converted.pt' --save-json --name yolov9_c_c_640_val
# evaluate yolov9 models
# python val_dual.py --data data/coco.yaml --img 640 --batch 32 --conf 0.001 --iou 0.7 --device 0 --weights './yolov9-c.pt' --save-json --name yolov9_c_640_val
# evaluate gelan models
# python val.py --data data/coco.yaml --img 640 --batch 32 --conf 0.001 --iou 0.7 --device 0 --weights './gelan-c.pt' --save-json --name gelan_c_640_val
```
You will get the results:
```
Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.530
Average Precision (AP) @[ IoU=0.50 | area= all | maxDets=100 ] = 0.702
Average Precision (AP) @[ IoU=0.75 | area= all | maxDets=100 ] = 0.578
Average Precision (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.362
Average Precision (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.585
Average Precision (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.693
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 1 ] = 0.392
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 10 ] = 0.652
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.702
Average Recall (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.541
Average Recall (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.760
Average Recall (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.844
```
## Training
Data preparation
``` shell
bash scripts/get_coco.sh
```
* Download MS COCO dataset images ([train](http://images.cocodataset.org/zips/train2017.zip), [val](http://images.cocodataset.org/zips/val2017.zip), [test](http://images.cocodataset.org/zips/test2017.zip)) and [labels](https://github.com/WongKinYiu/yolov7/releases/download/v0.1/coco2017labels-segments.zip). If you have previously used a different version of YOLO, we strong
没有合适的资源?快使用搜索试试~ 我知道了~
YOLOv9DMS驾驶员喝水检测权重,1000多数据集
共2000个文件
txt:1001个
jpg:884个
py:83个
1.该资源内容由用户上传,如若侵权请联系客服进行举报
2.虚拟产品一经售出概不退款(资源遇到问题,请及时私信上传者)
2.虚拟产品一经售出概不退款(资源遇到问题,请及时私信上传者)
版权申诉
0 下载量 41 浏览量
2024-07-05
22:57:23
上传
评论
收藏 372.8MB ZIP 举报
温馨提示
YOLOv9DMS驾驶员喝水检测权重,1000多数据集,目录已经配置好,划分好 train,val, test,并附有data.yaml文件,yolov5、yolov7、yolov8,yolov9等算法可以直接进行训练模型,txt格式标签, 数据集和检测结果参考:https://blog.csdn.net/zhiqingAI/article/details/124230743 https://download.csdn.net/download/zhiqingAI/88935038 数据集配置目录结构data.yaml: nc: 1 names: - Drinking
资源推荐
资源详情
资源评论
收起资源包目录
YOLOv9DMS驾驶员喝水检测权重,1000多数据集 (2000个子文件)
labels.cache 202KB
labels.cache 29KB
reparameterization.ipynb 9KB
img_47226_jpg.rf.adbb12ee752d9df0cfeb04670290c875.jpg 59KB
img_55050_jpg.rf.8306a26ddbaa3ce7f1d1b9b31b9c66eb.jpg 59KB
img_29261_jpg.rf.ab52a4e8ab4f1825037ab42c13e56e7e.jpg 59KB
img_45356_jpg.rf.879dbce7f7c84eb9799544a462a658db.jpg 59KB
img_48804_jpg.rf.c384c359322b2ac65ea3c2a6439a99b6.jpg 59KB
img_17990_jpg.rf.8bb4ff475fc149f6909d8dc2df039930.jpg 58KB
img_24256_jpg.rf.af696d4804cf415ddfceeb534698903d.jpg 58KB
img_58845_jpg.rf.b59a655cc9ba535d9fc1fc833c8a7906.jpg 58KB
img_28125_jpg.rf.6fe90dedd90edb675e2895d545a96a45.jpg 58KB
img_60857_jpg.rf.8a94db54fbad1bec32da4b7e1e314a74.jpg 58KB
img_43772_jpg.rf.6aad78a162df91458814d075c7a1ee19.jpg 58KB
img_29620_jpg.rf.5a82d0f266824c5b3ee2027c90e144a7.jpg 58KB
img_61663_jpg.rf.776d38d4261fad013fdbfb00e66646ec.jpg 58KB
img_24368_jpg.rf.f13da0081e2ab81fd958a44c4d86892b.jpg 58KB
img_42210_jpg.rf.19722208371b06ba44905f6794591e24.jpg 58KB
img_20035_jpg.rf.f43e75e3dacd6166481f4f30583fe57c.jpg 58KB
img_61811_jpg.rf.a743447e34bbecfdb020f1bf53bafdac.jpg 58KB
img_35633_jpg.rf.21572415b6682ea19e8ea0facd93c500.jpg 58KB
img_33786_jpg.rf.97328c5237fec41ad4eac0033f83790b.jpg 57KB
img_51851_jpg.rf.8abb9d4730a5d5104b0eae81562e0999.jpg 57KB
img_24524_jpg.rf.059a7fd47f209fc1edb79fc8a84358ab.jpg 57KB
img_46327_jpg.rf.2a0cf122b5a02be929821ec2f3787af9.jpg 57KB
img_49636_jpg.rf.15371aa2bbb30b592e1aa5a0e3284283.jpg 57KB
img_44157_jpg.rf.15cb39a2a92cafee801b31bd30e231e4.jpg 57KB
img_47260_jpg.rf.97c797b9bd100bef7d922fc3da69bc61.jpg 57KB
img_51044_jpg.rf.e5498840154cda529b5786e6dad43757.jpg 57KB
img_52150_jpg.rf.ae7249af2d2777d3c3174cbd2765dd15.jpg 57KB
img_24306_jpg.rf.b20f8e24fea59b9262fb7c92306ba4a5.jpg 57KB
img_57002_jpg.rf.3b604b0b1074f7ba1a229bbce50337f3.jpg 57KB
img_18418_jpg.rf.c84ba3dc966a70adacdbd2544d736ca5.jpg 57KB
img_36911_jpg.rf.023dfb1707293a3a3777fa8c3d8f5b6c.jpg 57KB
img_31303_jpg.rf.6f1dd1cc558d77349347bf80c03dc1eb.jpg 57KB
img_44758_jpg.rf.a4db1061f0d8f2e7528dda277705cd50.jpg 56KB
img_52788_jpg.rf.16f4d5fa4d836714b1a612293b2f2818.jpg 56KB
img_20968_jpg.rf.41005f718b724466b5f9907404f143cb.jpg 56KB
img_40050_jpg.rf.3e5d49a3eb96935ded5a95730f305dab.jpg 56KB
img_42010_jpg.rf.93f76e64f572623f764f13c8b2f2a47c.jpg 56KB
img_56854_jpg.rf.6e43ab534695aa2f1f2941c030ddef75.jpg 56KB
img_54681_jpg.rf.54934982b88f8df296140061b10f10a3.jpg 56KB
img_19675_jpg.rf.a50553326cdf2355fba438bf168bcf6f.jpg 56KB
img_23112_jpg.rf.4759d44c0555651ae2addd1bd45c8e59.jpg 56KB
img_44690_jpg.rf.4ccd43821428f215260ad547d5170f79.jpg 56KB
img_29342_jpg.rf.4a8dcc73f7c2b536f9213d7153e5ccc1.jpg 56KB
img_32675_jpg.rf.2a1fb0e7d3233ad2f0ad000da04b3f0d.jpg 56KB
img_25851_jpg.rf.1cc140197ee19f5f13a17b558a4f3b98.jpg 56KB
img_29761_jpg.rf.7f1ff98114d1ac3d79ab9757322fa0c4.jpg 56KB
img_23459_jpg.rf.865b55dae958b61e62beb0fa5fe6add2.jpg 56KB
img_49719_jpg.rf.500578bee6eeea9d0e2abf7c3cbdec10.jpg 56KB
img_24905_jpg.rf.e8c036c466229adc54c846f0be8a2e39.jpg 56KB
img_16886_jpg.rf.b4ec95e318966e3b9aa368483f860165.jpg 56KB
img_30199_jpg.rf.27392204008d17555690770262ac575d.jpg 56KB
img_37042_jpg.rf.ce34e404dda815f21a25be75b37949b7.jpg 56KB
img_39931_jpg.rf.54abb5bad652d47eee907bd9f622f070.jpg 56KB
img_43834_jpg.rf.b23a359816dcb408750da4fe9fdeccde.jpg 56KB
img_60080_jpg.rf.df0c8fc590d96d128efcbab28632d7bc.jpg 56KB
img_35150_jpg.rf.fe2ffb2250f089daa0d5ccd5939dea69.jpg 56KB
img_51962_jpg.rf.30b2d1498e7b8275644bfd5bb83a39ee.jpg 56KB
img_32973_jpg.rf.522963f2b56dc1d832dde1dae2556043.jpg 56KB
img_43511_jpg.rf.576cee4d7b90014a9f19d3fd1cd62344.jpg 56KB
img_60183_jpg.rf.44c8635932a81975d6d760454468490e.jpg 56KB
img_38974_jpg.rf.0305f35c9d74b3f9ccb18ca542f1e9ea.jpg 55KB
img_37202_jpg.rf.0133509ef9b805842eb86a51b388019e.jpg 55KB
img_55578_jpg.rf.acf24b4f3473b24234699c41cb94870e.jpg 55KB
img_27308_jpg.rf.8a2e7e7574be4dc09bd0cc5fd8ba99da.jpg 55KB
img_36965_jpg.rf.4b63755b922daf8826d6312185c22336.jpg 55KB
img_26293_jpg.rf.a930e5632f3637261506a2d273beb7c4.jpg 55KB
img_16954_jpg.rf.f58243336022de38fb8a7ada2a1d4da6.jpg 55KB
img_50117_jpg.rf.3a272289432e555498ebd28ca36421eb.jpg 55KB
img_53020_jpg.rf.17dc9a9a3538e0eaf36df0d870e7bb29.jpg 55KB
img_47827_jpg.rf.7a49519229ba47e2162c8f2685a76af5.jpg 55KB
img_36519_jpg.rf.40439b121ffa1dc8570aad0328b77b5c.jpg 55KB
img_29776_jpg.rf.d41293f819d493dfdb05be3327ac5416.jpg 55KB
img_39315_jpg.rf.c8e814703ce139b7377fdf02b294a4a4.jpg 55KB
img_40361_jpg.rf.c88f2294a4c3436477c216c5fa8f586b.jpg 55KB
img_50625_jpg.rf.e96b9ca033b79752d3fe897d9d97ecd2.jpg 55KB
img_26010_jpg.rf.dcb45ccf72ed00f30b1133fdb72018f7.jpg 55KB
img_44028_jpg.rf.081576dbebfe18622adec1c466377a71.jpg 55KB
img_37392_jpg.rf.6e03b40e2ced939defd9b0aedd74a6f8.jpg 55KB
img_27077_jpg.rf.d13c215ec8cea8802bb3ca0639bb5bde.jpg 55KB
img_47259_jpg.rf.454385f69e70c1805b6634ae9852de7e.jpg 55KB
img_32524_jpg.rf.21839af65ff4b8ca7318cbba447c624d.jpg 55KB
img_25763_jpg.rf.bfb11cd8eb2d726e4add2ff62abd6b18.jpg 55KB
img_61629_jpg.rf.214406e2ac8c1910637f3c43d86843e7.jpg 55KB
img_25077_jpg.rf.985d53dd62df68585eb4a9f5326ac061.jpg 55KB
img_51139_jpg.rf.0b90447a2f67aaf3ace348174d29434c.jpg 54KB
img_56557_jpg.rf.209715a734f92fdf4027fc1775761f5a.jpg 54KB
img_41856_jpg.rf.0c2cb56707ad42fa04253d295ec63945.jpg 54KB
img_17404_jpg.rf.d0f121e12aab6ca5828b4e1008b9300e.jpg 54KB
img_42018_jpg.rf.786cfd6d7e9dc3efcfd6a5d49b43a4c3.jpg 54KB
img_50070_jpg.rf.b81c9900393b7a6b6221bb1f3d6cebcb.jpg 54KB
img_54808_jpg.rf.25e9916dec221ccc7c61e4d0b8ddf918.jpg 54KB
img_30310_jpg.rf.b888e380d069e869301c1b2aa3290b6c.jpg 54KB
img_17104_jpg.rf.fcb4cc076f4262a7452409a309ae07e3.jpg 54KB
img_46007_jpg.rf.327565f471a034a5227eb7fe90d89873.jpg 54KB
img_22023_jpg.rf.1b890401d0f0b314b2bb856a837bde5f.jpg 54KB
img_51995_jpg.rf.98f8627bf697d5e3aeb717ff009f7b95.jpg 54KB
img_31003_jpg.rf.3fb738cb2443e6f4ddd7be4661200543.jpg 54KB
共 2000 条
- 1
- 2
- 3
- 4
- 5
- 6
- 20
资源评论
stsdddd
- 粉丝: 3w+
- 资源: 929
上传资源 快速赚钱
- 我的内容管理 展开
- 我的资源 快来上传第一个资源
- 我的收益 登录查看自己的收益
- 我的积分 登录查看自己的积分
- 我的C币 登录后查看C币余额
- 我的收藏
- 我的下载
- 下载帮助
最新资源
- 基于Django和HTML的新疆地区水稻产量影响因素可视化分析系统(含数据集)
- windows conan2应用构建模板
- 3_base.apk.1
- 基于STM32F103C8T6的4g模块(air724ug)
- 基于Java技术的ASC学业支持中心并行项目开发设计源码
- 基于Java和微信支付的wxmall开源卖票商城设计源码
- 基于Java和前端技术的东软环保公众监督系统设计源码
- 基于Python、HTML、CSS的crawlerdemo软件工程实训爬虫设计源码
- 基于多智能体深度强化学习的边缘协同任务卸载方法设计源码
- 基于BS架构的Java、Vue、JavaScript、CSS、HTML整合的毕业设计源码
资源上传下载、课程学习等过程中有任何疑问或建议,欢迎提出宝贵意见哦~我们会及时处理!
点击此处反馈
安全验证
文档复制为VIP权益,开通VIP直接复制
信息提交成功