<a href="https://apps.apple.com/app/id1452689527" target="_blank">
<img src="https://user-images.githubusercontent.com/26833433/98699617-a1595a00-2377-11eb-8145-fc674eb9b1a7.jpg" width="1000"></a>
 
<a href="https://github.com/ultralytics/yolov5/actions"><img src="https://github.com/ultralytics/yolov5/workflows/CI%20CPU%20testing/badge.svg" alt="CI CPU testing"></a>
This repository represents Ultralytics open-source research into future object detection methods, and incorporates lessons learned and best practices evolved over thousands of hours of training and evolution on anonymized client datasets. **All code and models are under active development, and are subject to modification or deletion without notice.** Use at your own risk.
<p align="center"><img width="800" src="https://user-images.githubusercontent.com/26833433/114313216-f0a5e100-9af5-11eb-8445-c682b60da2e3.png"></p>
<details>
<summary>YOLOv5-P5 640 Figure (click to expand)</summary>
<p align="center"><img width="800" src="https://user-images.githubusercontent.com/26833433/114313219-f1d70e00-9af5-11eb-9973-52b1f98d321a.png"></p>
</details>
<details>
<summary>Figure Notes (click to expand)</summary>
* GPU Speed measures end-to-end time per image averaged over 5000 COCO val2017 images using a V100 GPU with batch size 32, and includes image preprocessing, PyTorch FP16 inference, postprocessing and NMS.
* EfficientDet data from [google/automl](https://github.com/google/automl) at batch size 8.
* **Reproduce** by `python test.py --task study --data coco.yaml --iou 0.7 --weights yolov5s6.pt yolov5m6.pt yolov5l6.pt yolov5x6.pt`
</details>
- **April 11, 2021**: [v5.0 release](https://github.com/ultralytics/yolov5/releases/tag/v5.0): YOLOv5-P6 1280 models, [AWS](https://github.com/ultralytics/yolov5/wiki/AWS-Quickstart), [Supervise.ly](https://github.com/ultralytics/yolov5/issues/2518) and [YouTube](https://github.com/ultralytics/yolov5/pull/2752) integrations.
- **January 5, 2021**: [v4.0 release](https://github.com/ultralytics/yolov5/releases/tag/v4.0): nn.SiLU() activations, [Weights & Biases](https://wandb.ai/site?utm_campaign=repo_yolo_readme) logging, [PyTorch Hub](https://pytorch.org/hub/ultralytics_yolov5/) integration.
- **August 13, 2020**: [v3.0 release](https://github.com/ultralytics/yolov5/releases/tag/v3.0): nn.Hardswish() activations, data autodownload, native AMP.
- **July 23, 2020**: [v2.0 release](https://github.com/ultralytics/yolov5/releases/tag/v2.0): improved model definition, training and mAP.
## Pretrained Checkpoints
[assets]: https://github.com/ultralytics/yolov5/releases
Model |size<br><sup>(pixels) |mAP<sup>val<br>0.5:0.95 |mAP<sup>test<br>0.5:0.95 |mAP<sup>val<br>0.5 |Speed<br><sup>V100 (ms) | |params<br><sup>(M) |FLOPS<br><sup>640 (B)
--- |--- |--- |--- |--- |--- |---|--- |---
[YOLOv5s][assets] |640 |36.7 |36.7 |55.4 |**2.0** | |7.3 |17.0
[YOLOv5m][assets] |640 |44.5 |44.5 |63.3 |2.7 | |21.4 |51.3
[YOLOv5l][assets] |640 |48.2 |48.2 |66.9 |3.8 | |47.0 |115.4
[YOLOv5x][assets] |640 |**50.4** |**50.4** |**68.8** |6.1 | |87.7 |218.8
| | | | | | || |
[YOLOv5s6][assets] |1280 |43.3 |43.3 |61.9 |**4.3** | |12.7 |17.4
[YOLOv5m6][assets] |1280 |50.5 |50.5 |68.7 |8.4 | |35.9 |52.4
[YOLOv5l6][assets] |1280 |53.4 |53.4 |71.1 |12.3 | |77.2 |117.7
[YOLOv5x6][assets] |1280 |**54.4** |**54.4** |**72.0** |22.4 | |141.8 |222.9
| | | | | | || |
[YOLOv5x6][assets] TTA |1280 |**55.0** |**55.0** |**72.0** |70.8 | |- |-
<details>
<summary>Table Notes (click to expand)</summary>
* AP<sup>test</sup> denotes COCO [test-dev2017](http://cocodataset.org/#upload) server results, all other AP results denote val2017 accuracy.
* AP values are for single-model single-scale unless otherwise noted. **Reproduce mAP** by `python test.py --data coco.yaml --img 640 --conf 0.001 --iou 0.65`
* Speed<sub>GPU</sub> averaged over 5000 COCO val2017 images using a GCP [n1-standard-16](https://cloud.google.com/compute/docs/machine-types#n1_standard_machine_types) V100 instance, and includes FP16 inference, postprocessing and NMS. **Reproduce speed** by `python test.py --data coco.yaml --img 640 --conf 0.25 --iou 0.45`
* All checkpoints are trained to 300 epochs with default settings and hyperparameters (no autoaugmentation).
* Test Time Augmentation ([TTA](https://github.com/ultralytics/yolov5/issues/303)) includes reflection and scale augmentation. **Reproduce TTA** by `python test.py --data coco.yaml --img 1536 --iou 0.7 --augment`
</details>
## Requirements
Python 3.8 or later with all [requirements.txt](https://github.com/ultralytics/yolov5/blob/master/requirements.txt) dependencies installed, including `torch>=1.7`. To install run:
```bash
$ pip install -r requirements.txt
```
## Tutorials
* [Train Custom Data](https://github.com/ultralytics/yolov5/wiki/Train-Custom-Data) ð RECOMMENDED
* [Tips for Best Training Results](https://github.com/ultralytics/yolov5/wiki/Tips-for-Best-Training-Results) âï¸ RECOMMENDED
* [Weights & Biases Logging](https://github.com/ultralytics/yolov5/issues/1289) ð NEW
* [Supervisely Ecosystem](https://github.com/ultralytics/yolov5/issues/2518) ð NEW
* [Multi-GPU Training](https://github.com/ultralytics/yolov5/issues/475)
* [PyTorch Hub](https://github.com/ultralytics/yolov5/issues/36) â NEW
* [ONNX and TorchScript Export](https://github.com/ultralytics/yolov5/issues/251)
* [Test-Time Augmentation (TTA)](https://github.com/ultralytics/yolov5/issues/303)
* [Model Ensembling](https://github.com/ultralytics/yolov5/issues/318)
* [Model Pruning/Sparsity](https://github.com/ultralytics/yolov5/issues/304)
* [Hyperparameter Evolution](https://github.com/ultralytics/yolov5/issues/607)
* [Transfer Learning with Frozen Layers](https://github.com/ultralytics/yolov5/issues/1314) â NEW
* [TensorRT Deployment](https://github.com/wang-xinyu/tensorrtx)
## Environments
YOLOv5 may be run in any of the following up-to-date verified environments (with all dependencies including [CUDA](https://developer.nvidia.com/cuda)/[CUDNN](https://developer.nvidia.com/cudnn), [Python](https://www.python.org/) and [PyTorch](https://pytorch.org/) preinstalled):
- **Google Colab and Kaggle** notebooks with free GPU: <a href="https://colab.research.google.com/github/ultralytics/yolov5/blob/master/tutorial.ipynb"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"></a> <a href="https://www.kaggle.com/ultralytics/yolov5"><img src="https://kaggle.com/static/images/open-in-kaggle.svg" alt="Open In Kaggle"></a>
- **Google Cloud** Deep Learning VM. See [GCP Quickstart Guide](https://github.com/ultralytics/yolov5/wiki/GCP-Quickstart)
- **Amazon** Deep Learning AMI. See [AWS Quickstart Guide](https://github.com/ultralytics/yolov5/wiki/AWS-Quickstart)
- **Docker Image**. See [Docker Quickstart Guide](https://github.com/ultralytics/yolov5/wiki/Docker-Quickstart) <a href="https://hub.docker.com/r/ultralytics/yolov5"><img src="https://img.shields.io/docker/pulls/ultralytics/yolov5?logo=docker" alt="Docker Pulls"></a>
## Inference
`detect.py` runs inference on a variety of sources, downloading models automatically from the [latest YOLOv5 release](https://github.com/ultralytics/yolov5/releases) and saving results to `runs/detect`.
```bash
$ python detect.py --source 0 # webcam
file.jpg # image
file.mp4 # video
path/ # directory
path/*.jpg # glob
'https://youtu.be/NUsoVlDFqZg' # YouTube video
'rtsp://example.com/media.mp4' # RTSP, RTMP, HTTP stream
```
To run inference on example images in `data/images`:
```bash
$ python detect.py
没有合适的资源?快使用搜索试试~ 我知道了~
YOLOv5算法dms驾驶员喝水-饮料检测权重+1000数据集
共2000个文件
txt:1003个
jpg:929个
yaml:29个
1.该资源内容由用户上传,如若侵权请联系客服进行举报
2.虚拟产品一经售出概不退款(资源遇到问题,请及时私信上传者)
2.虚拟产品一经售出概不退款(资源遇到问题,请及时私信上传者)
版权申诉
0 下载量 63 浏览量
2024-05-31
21:51:53
上传
评论
收藏 89.15MB ZIP 举报
温馨提示
YOLOv5DMS驾驶员喝水检测权重,1000多数据集,目录已经配置好,划分好 train,val, test,并附有data.yaml文件,yolov5、yolov7、yolov8,yolov9等算法可以直接进行训练模型,txt格式标签, 数据集和检测结果参考:https://blog.csdn.net/zhiqingAI/article/details/124230743 https://download.csdn.net/download/zhiqingAI/88935038 数据集配置目录结构data.yaml: nc: 1 names: - Drinking
资源推荐
资源详情
资源评论
收起资源包目录
YOLOv5算法dms驾驶员喝水-饮料检测权重+1000数据集 (2000个子文件)
2.0' 0B
labels.cache 166KB
labels.cache 24KB
img_47226_jpg.rf.adbb12ee752d9df0cfeb04670290c875.jpg 59KB
img_55050_jpg.rf.8306a26ddbaa3ce7f1d1b9b31b9c66eb.jpg 59KB
img_29261_jpg.rf.ab52a4e8ab4f1825037ab42c13e56e7e.jpg 59KB
img_27418_jpg.rf.3c788aeb31638c4580888f20f8e81af6.jpg 59KB
img_45356_jpg.rf.879dbce7f7c84eb9799544a462a658db.jpg 59KB
img_48804_jpg.rf.c384c359322b2ac65ea3c2a6439a99b6.jpg 59KB
img_17990_jpg.rf.8bb4ff475fc149f6909d8dc2df039930.jpg 58KB
img_24256_jpg.rf.af696d4804cf415ddfceeb534698903d.jpg 58KB
img_58845_jpg.rf.b59a655cc9ba535d9fc1fc833c8a7906.jpg 58KB
img_28125_jpg.rf.6fe90dedd90edb675e2895d545a96a45.jpg 58KB
img_60857_jpg.rf.8a94db54fbad1bec32da4b7e1e314a74.jpg 58KB
img_43772_jpg.rf.6aad78a162df91458814d075c7a1ee19.jpg 58KB
img_26382_jpg.rf.5a0fbd3230e0bf5d3ca5543c0eae1a21.jpg 58KB
img_29620_jpg.rf.5a82d0f266824c5b3ee2027c90e144a7.jpg 58KB
img_61663_jpg.rf.776d38d4261fad013fdbfb00e66646ec.jpg 58KB
img_24368_jpg.rf.f13da0081e2ab81fd958a44c4d86892b.jpg 58KB
img_42210_jpg.rf.19722208371b06ba44905f6794591e24.jpg 58KB
img_20035_jpg.rf.f43e75e3dacd6166481f4f30583fe57c.jpg 58KB
img_61811_jpg.rf.a743447e34bbecfdb020f1bf53bafdac.jpg 58KB
img_35633_jpg.rf.21572415b6682ea19e8ea0facd93c500.jpg 58KB
img_33786_jpg.rf.97328c5237fec41ad4eac0033f83790b.jpg 57KB
img_51851_jpg.rf.8abb9d4730a5d5104b0eae81562e0999.jpg 57KB
img_24524_jpg.rf.059a7fd47f209fc1edb79fc8a84358ab.jpg 57KB
img_46327_jpg.rf.2a0cf122b5a02be929821ec2f3787af9.jpg 57KB
img_49636_jpg.rf.15371aa2bbb30b592e1aa5a0e3284283.jpg 57KB
img_44157_jpg.rf.15cb39a2a92cafee801b31bd30e231e4.jpg 57KB
img_47260_jpg.rf.97c797b9bd100bef7d922fc3da69bc61.jpg 57KB
img_51044_jpg.rf.e5498840154cda529b5786e6dad43757.jpg 57KB
img_52150_jpg.rf.ae7249af2d2777d3c3174cbd2765dd15.jpg 57KB
img_24306_jpg.rf.b20f8e24fea59b9262fb7c92306ba4a5.jpg 57KB
img_25547_jpg.rf.a9110adf9ab87a152f81487bac5f9b21.jpg 57KB
img_57002_jpg.rf.3b604b0b1074f7ba1a229bbce50337f3.jpg 57KB
img_18418_jpg.rf.c84ba3dc966a70adacdbd2544d736ca5.jpg 57KB
img_36911_jpg.rf.023dfb1707293a3a3777fa8c3d8f5b6c.jpg 57KB
img_21284_jpg.rf.14acb18a0b96cce98b411d4ee61d0501.jpg 57KB
img_31303_jpg.rf.6f1dd1cc558d77349347bf80c03dc1eb.jpg 57KB
img_44758_jpg.rf.a4db1061f0d8f2e7528dda277705cd50.jpg 56KB
img_52788_jpg.rf.16f4d5fa4d836714b1a612293b2f2818.jpg 56KB
img_20968_jpg.rf.41005f718b724466b5f9907404f143cb.jpg 56KB
img_40050_jpg.rf.3e5d49a3eb96935ded5a95730f305dab.jpg 56KB
img_42010_jpg.rf.93f76e64f572623f764f13c8b2f2a47c.jpg 56KB
img_39796_jpg.rf.47ae34ebfe1101f583e3d452694418d9.jpg 56KB
img_56854_jpg.rf.6e43ab534695aa2f1f2941c030ddef75.jpg 56KB
img_54681_jpg.rf.54934982b88f8df296140061b10f10a3.jpg 56KB
img_19675_jpg.rf.a50553326cdf2355fba438bf168bcf6f.jpg 56KB
img_23112_jpg.rf.4759d44c0555651ae2addd1bd45c8e59.jpg 56KB
img_44690_jpg.rf.4ccd43821428f215260ad547d5170f79.jpg 56KB
img_29342_jpg.rf.4a8dcc73f7c2b536f9213d7153e5ccc1.jpg 56KB
img_32675_jpg.rf.2a1fb0e7d3233ad2f0ad000da04b3f0d.jpg 56KB
img_25851_jpg.rf.1cc140197ee19f5f13a17b558a4f3b98.jpg 56KB
img_41618_jpg.rf.a4178a8ce67594f3e53225d53d3c23af.jpg 56KB
img_29761_jpg.rf.7f1ff98114d1ac3d79ab9757322fa0c4.jpg 56KB
img_23459_jpg.rf.865b55dae958b61e62beb0fa5fe6add2.jpg 56KB
img_49719_jpg.rf.500578bee6eeea9d0e2abf7c3cbdec10.jpg 56KB
img_24905_jpg.rf.e8c036c466229adc54c846f0be8a2e39.jpg 56KB
img_16886_jpg.rf.b4ec95e318966e3b9aa368483f860165.jpg 56KB
img_30199_jpg.rf.27392204008d17555690770262ac575d.jpg 56KB
img_37042_jpg.rf.ce34e404dda815f21a25be75b37949b7.jpg 56KB
img_39931_jpg.rf.54abb5bad652d47eee907bd9f622f070.jpg 56KB
img_43834_jpg.rf.b23a359816dcb408750da4fe9fdeccde.jpg 56KB
img_60080_jpg.rf.df0c8fc590d96d128efcbab28632d7bc.jpg 56KB
img_35150_jpg.rf.fe2ffb2250f089daa0d5ccd5939dea69.jpg 56KB
img_51962_jpg.rf.30b2d1498e7b8275644bfd5bb83a39ee.jpg 56KB
img_32973_jpg.rf.522963f2b56dc1d832dde1dae2556043.jpg 56KB
img_43511_jpg.rf.576cee4d7b90014a9f19d3fd1cd62344.jpg 56KB
img_24432_jpg.rf.2b374067287a71be20c10de3d931c8c3.jpg 56KB
img_60183_jpg.rf.44c8635932a81975d6d760454468490e.jpg 56KB
img_38974_jpg.rf.0305f35c9d74b3f9ccb18ca542f1e9ea.jpg 55KB
img_37202_jpg.rf.0133509ef9b805842eb86a51b388019e.jpg 55KB
img_55578_jpg.rf.acf24b4f3473b24234699c41cb94870e.jpg 55KB
img_27308_jpg.rf.8a2e7e7574be4dc09bd0cc5fd8ba99da.jpg 55KB
img_36965_jpg.rf.4b63755b922daf8826d6312185c22336.jpg 55KB
img_26293_jpg.rf.a930e5632f3637261506a2d273beb7c4.jpg 55KB
img_16954_jpg.rf.f58243336022de38fb8a7ada2a1d4da6.jpg 55KB
img_50117_jpg.rf.3a272289432e555498ebd28ca36421eb.jpg 55KB
img_53020_jpg.rf.17dc9a9a3538e0eaf36df0d870e7bb29.jpg 55KB
img_47827_jpg.rf.7a49519229ba47e2162c8f2685a76af5.jpg 55KB
img_36519_jpg.rf.40439b121ffa1dc8570aad0328b77b5c.jpg 55KB
img_29776_jpg.rf.d41293f819d493dfdb05be3327ac5416.jpg 55KB
img_39315_jpg.rf.c8e814703ce139b7377fdf02b294a4a4.jpg 55KB
img_40361_jpg.rf.c88f2294a4c3436477c216c5fa8f586b.jpg 55KB
img_50625_jpg.rf.e96b9ca033b79752d3fe897d9d97ecd2.jpg 55KB
img_26010_jpg.rf.dcb45ccf72ed00f30b1133fdb72018f7.jpg 55KB
img_44028_jpg.rf.081576dbebfe18622adec1c466377a71.jpg 55KB
img_37392_jpg.rf.6e03b40e2ced939defd9b0aedd74a6f8.jpg 55KB
img_27077_jpg.rf.d13c215ec8cea8802bb3ca0639bb5bde.jpg 55KB
img_47259_jpg.rf.454385f69e70c1805b6634ae9852de7e.jpg 55KB
img_32524_jpg.rf.21839af65ff4b8ca7318cbba447c624d.jpg 55KB
img_25763_jpg.rf.bfb11cd8eb2d726e4add2ff62abd6b18.jpg 55KB
img_61629_jpg.rf.214406e2ac8c1910637f3c43d86843e7.jpg 55KB
img_25077_jpg.rf.985d53dd62df68585eb4a9f5326ac061.jpg 55KB
img_51139_jpg.rf.0b90447a2f67aaf3ace348174d29434c.jpg 54KB
img_56557_jpg.rf.209715a734f92fdf4027fc1775761f5a.jpg 54KB
img_41856_jpg.rf.0c2cb56707ad42fa04253d295ec63945.jpg 54KB
img_17404_jpg.rf.d0f121e12aab6ca5828b4e1008b9300e.jpg 54KB
img_42018_jpg.rf.786cfd6d7e9dc3efcfd6a5d49b43a4c3.jpg 54KB
img_50070_jpg.rf.b81c9900393b7a6b6221bb1f3d6cebcb.jpg 54KB
共 2000 条
- 1
- 2
- 3
- 4
- 5
- 6
- 20
资源评论
stsdddd
- 粉丝: 3w+
- 资源: 929
上传资源 快速赚钱
- 我的内容管理 展开
- 我的资源 快来上传第一个资源
- 我的收益 登录查看自己的收益
- 我的积分 登录查看自己的积分
- 我的C币 登录后查看C币余额
- 我的收藏
- 我的下载
- 下载帮助
最新资源
- apache-maven-3.6.1-bin.zip
- c593f5fc-d4a7-4b43-8ab2-51afc90f3f62
- IIR滤波器参数计算函数
- WPF树菜单拖拽功能,下级目录拖到上级目录,上级目录拖到下级目录.zip
- CDH6.3.2版本hive2.1.1修复HIVE-14706后的jar包
- 鸿蒙项目实战-天气项目(当前城市天气、温度、湿度,24h天气,未来七天天气预报,生活指数,城市选择等)
- Linux环境下oracle数据库服务器配置中文最新版本
- Linux操作系统中Oracle11g数据库安装步骤详细图解中文最新版本
- SMA中心接触件插合力量(插入力及分离力)仿真
- 变色龙记事本,有NPP功能,JSONview功能
资源上传下载、课程学习等过程中有任何疑问或建议,欢迎提出宝贵意见哦~我们会及时处理!
点击此处反馈
安全验证
文档复制为VIP权益,开通VIP直接复制
信息提交成功