# YOLOv9
Implementation of paper - [YOLOv9: Learning What You Want to Learn Using Programmable Gradient Information](https://arxiv.org/abs/2402.13616)
[![arxiv.org](http://img.shields.io/badge/cs.CV-arXiv%3A2402.13616-B31B1B.svg)](https://arxiv.org/abs/2402.13616)
[![Hugging Face Spaces](https://img.shields.io/badge/%F0%9F%A4%97%20Hugging%20Face-Spaces-blue)](https://huggingface.co/spaces/kadirnar/Yolov9)
[![Hugging Face Spaces](https://img.shields.io/badge/%F0%9F%A4%97%20Hugging%20Face-Spaces-blue)](https://huggingface.co/merve/yolov9)
[![Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/roboflow-ai/notebooks/blob/main/notebooks/train-yolov9-object-detection-on-custom-dataset.ipynb)
[![OpenCV](https://img.shields.io/badge/OpenCV-BlogPost-black?logo=opencv&labelColor=blue&color=black)](https://learnopencv.com/yolov9-advancing-the-yolo-legacy/)
<div align="center">
<a href="./">
<img src="./figure/performance.png" width="79%"/>
</a>
</div>
## Performance
MS COCO
| Model | Test Size | AP<sup>val</sup> | AP<sub>50</sub><sup>val</sup> | AP<sub>75</sub><sup>val</sup> | Param. | FLOPs |
| :-- | :-: | :-: | :-: | :-: | :-: | :-: |
| [**YOLOv9-T**]() | 640 | **38.3%** | **53.1%** | **41.3%** | **2.0M** | **7.7G** |
| [**YOLOv9-S**]() | 640 | **46.8%** | **63.4%** | **50.7%** | **7.1M** | **26.4G** |
| [**YOLOv9-M**]() | 640 | **51.4%** | **68.1%** | **56.1%** | **20.0M** | **76.3G** |
| [**YOLOv9-C**](https://github.com/WongKinYiu/yolov9/releases/download/v0.1/yolov9-c-converted.pt) | 640 | **53.0%** | **70.2%** | **57.8%** | **25.3M** | **102.1G** |
| [**YOLOv9-E**](https://github.com/WongKinYiu/yolov9/releases/download/v0.1/yolov9-e-converted.pt) | 640 | **55.6%** | **72.8%** | **60.6%** | **57.3M** | **189.0G** |
<!-- | [**YOLOv9 (ReLU)**]() | 640 | **51.9%** | **69.1%** | **56.5%** | **25.3M** | **102.1G** | -->
<!-- tiny, small, and medium models will be released after the paper be accepted and published. -->
## Useful Links
<details><summary> <b>Expand</b> </summary>
Custom training: https://github.com/WongKinYiu/yolov9/issues/30#issuecomment-1960955297
ONNX export: https://github.com/WongKinYiu/yolov9/issues/2#issuecomment-1960519506 https://github.com/WongKinYiu/yolov9/issues/40#issue-2150697688 https://github.com/WongKinYiu/yolov9/issues/130#issue-2162045461
ONNX export for segmentation: https://github.com/WongKinYiu/yolov9/issues/260#issue-2191162150
TensorRT inference: https://github.com/WongKinYiu/yolov9/issues/143#issuecomment-1975049660 https://github.com/WongKinYiu/yolov9/issues/34#issue-2150393690 https://github.com/WongKinYiu/yolov9/issues/79#issue-2153547004 https://github.com/WongKinYiu/yolov9/issues/143#issue-2164002309
QAT TensorRT: https://github.com/WongKinYiu/yolov9/issues/327#issue-2229284136 https://github.com/WongKinYiu/yolov9/issues/253#issue-2189520073
TFLite: https://github.com/WongKinYiu/yolov9/issues/374#issuecomment-2065751706
OpenVINO: https://github.com/WongKinYiu/yolov9/issues/164#issue-2168540003
C# ONNX inference: https://github.com/WongKinYiu/yolov9/issues/95#issue-2155974619
C# OpenVINO inference: https://github.com/WongKinYiu/yolov9/issues/95#issuecomment-1968131244
OpenCV: https://github.com/WongKinYiu/yolov9/issues/113#issuecomment-1971327672
Hugging Face demo: https://github.com/WongKinYiu/yolov9/issues/45#issuecomment-1961496943
CoLab demo: https://github.com/WongKinYiu/yolov9/pull/18
ONNXSlim export: https://github.com/WongKinYiu/yolov9/pull/37
YOLOv9 ROS: https://github.com/WongKinYiu/yolov9/issues/144#issue-2164210644
YOLOv9 ROS TensorRT: https://github.com/WongKinYiu/yolov9/issues/145#issue-2164218595
YOLOv9 Julia: https://github.com/WongKinYiu/yolov9/issues/141#issuecomment-1973710107
YOLOv9 MLX: https://github.com/WongKinYiu/yolov9/issues/258#issue-2190586540
YOLOv9 StrongSORT with OSNet: https://github.com/WongKinYiu/yolov9/issues/299#issue-2212093340
YOLOv9 ByteTrack: https://github.com/WongKinYiu/yolov9/issues/78#issue-2153512879
YOLOv9 DeepSORT: https://github.com/WongKinYiu/yolov9/issues/98#issue-2156172319
YOLOv9 counting: https://github.com/WongKinYiu/yolov9/issues/84#issue-2153904804
YOLOv9 face detection: https://github.com/WongKinYiu/yolov9/issues/121#issue-2160218766
YOLOv9 segmentation onnxruntime: https://github.com/WongKinYiu/yolov9/issues/151#issue-2165667350
Comet logging: https://github.com/WongKinYiu/yolov9/pull/110
MLflow logging: https://github.com/WongKinYiu/yolov9/pull/87
AnyLabeling tool: https://github.com/WongKinYiu/yolov9/issues/48#issue-2152139662
AX650N deploy: https://github.com/WongKinYiu/yolov9/issues/96#issue-2156115760
Conda environment: https://github.com/WongKinYiu/yolov9/pull/93
AutoDL docker environment: https://github.com/WongKinYiu/yolov9/issues/112#issue-2158203480
</details>
## Installation
Docker environment (recommended)
<details><summary> <b>Expand</b> </summary>
``` shell
# create the docker container, you can change the share memory size if you have more.
nvidia-docker run --name yolov9 -it -v your_coco_path/:/coco/ -v your_code_path/:/yolov9 --shm-size=64g nvcr.io/nvidia/pytorch:21.11-py3
# apt install required packages
apt update
apt install -y zip htop screen libgl1-mesa-glx
# pip install required packages
pip install seaborn thop
# go to code folder
cd /yolov9
```
</details>
## Evaluation
[`yolov9-c-converted.pt`](https://github.com/WongKinYiu/yolov9/releases/download/v0.1/yolov9-c-converted.pt) [`yolov9-e-converted.pt`](https://github.com/WongKinYiu/yolov9/releases/download/v0.1/yolov9-e-converted.pt) [`yolov9-c.pt`](https://github.com/WongKinYiu/yolov9/releases/download/v0.1/yolov9-c.pt) [`yolov9-e.pt`](https://github.com/WongKinYiu/yolov9/releases/download/v0.1/yolov9-e.pt) [`gelan-c.pt`](https://github.com/WongKinYiu/yolov9/releases/download/v0.1/gelan-c.pt) [`gelan-e.pt`](https://github.com/WongKinYiu/yolov9/releases/download/v0.1/gelan-e.pt)
``` shell
# evaluate converted yolov9 models
python val.py --data data/coco.yaml --img 640 --batch 32 --conf 0.001 --iou 0.7 --device 0 --weights './yolov9-c-converted.pt' --save-json --name yolov9_c_c_640_val
# evaluate yolov9 models
# python val_dual.py --data data/coco.yaml --img 640 --batch 32 --conf 0.001 --iou 0.7 --device 0 --weights './yolov9-c.pt' --save-json --name yolov9_c_640_val
# evaluate gelan models
# python val.py --data data/coco.yaml --img 640 --batch 32 --conf 0.001 --iou 0.7 --device 0 --weights './gelan-c.pt' --save-json --name gelan_c_640_val
```
You will get the results:
```
Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.530
Average Precision (AP) @[ IoU=0.50 | area= all | maxDets=100 ] = 0.702
Average Precision (AP) @[ IoU=0.75 | area= all | maxDets=100 ] = 0.578
Average Precision (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.362
Average Precision (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.585
Average Precision (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.693
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 1 ] = 0.392
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 10 ] = 0.652
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.702
Average Recall (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.541
Average Recall (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.760
Average Recall (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.844
```
## Training
Data preparation
``` shell
bash scripts/get_coco.sh
```
* Download MS COCO dataset images ([train](http://images.cocodataset.org/zips/train2017.zip), [val](http://images.cocodataset.org/zips/val2017.zip), [test](http://images.cocodataset.org/zips/test2017.zip)) and [labels](https://github.com/WongKinYiu/yolov7/releases/download/v0.1/coco2017labels-segments.zip). If you have previously used a different version of YOLO, we strong
没有合适的资源?快使用搜索试试~ 我知道了~
yolov9驾驶员打哈欠-安全带检测权重+数据集
共2000个文件
txt:1991个
py:6个
md:2个
1.该资源内容由用户上传,如若侵权请联系客服进行举报
2.虚拟产品一经售出概不退款(资源遇到问题,请及时私信上传者)
2.虚拟产品一经售出概不退款(资源遇到问题,请及时私信上传者)
版权申诉
0 下载量 76 浏览量
2024-06-21
22:07:30
上传
评论
收藏 526.09MB ZIP 举报
温馨提示
yolov9驾驶员打哈欠-安全带检测权重,包含2000张yolo驾驶员疲劳驾驶检测打哈欠-安全带检测数据集,划分好 train,val, test,并附有data.yaml文件,yolov5、yolov7、yolov8,yolov9等算法可以直接进行训练模型,txt格式标签, 数据集和检测结果参考:https://blog.csdn.net/zhiqingAI/article/details/124230743 https://blog.csdn.net/zhiqingAI/article/details/137196103 数据集配置目录结构data.yaml: nc: 2 names: - yawn - seatbelt
资源推荐
资源详情
资源评论
收起资源包目录
yolov9驾驶员打哈欠-安全带检测权重+数据集 (2000个子文件)
LICENSE.md 34KB
README.md 15KB
train_dual.py 33KB
train.py 33KB
train_triple.py 33KB
val_dual.py 22KB
val.py 22KB
predict.py 13KB
452_jpg.rf.715426c42e322b50305a2680aacdca70.txt 87B
152_jpg.rf.3e9a9bad8ae3b67032baa401e34b8eaf.txt 87B
1346_jpg.rf.50a4efaad91f81bbbf0c6987f25913ba.txt 87B
141_jpg.rf.a5ec2c76af38348add39d3aab1921885.txt 87B
461_jpg.rf.f9bc85cc64cc8e40b0f616a4eb619202.txt 87B
195_jpg.rf.4c93416dcc65b411f262b4b0f67987ae.txt 87B
570_jpg.rf.82f33f62b3f95803b8c79123fae8b9d6.txt 87B
436_jpg.rf.17272974fb59b64474caa9cc79ee62a8.txt 87B
250_jpg.rf.2d9912e3a854ea2feedb14c2ef7d5d18.txt 87B
123_jpg.rf.cf45f76fdb4de71d66823c51a320b27e.txt 87B
19_jpg.rf.2f2993028c51462f04eca0a4892d9bcc.txt 87B
756_jpg.rf.9349b4a8b48d5f5f8564b169ca1df6da.txt 87B
725_jpg.rf.8465f10b01ebeec8152097778d5140f3.txt 87B
532_jpg.rf.bd3d78f2e0484175e0ba14ebbac69d54.txt 87B
72_jpg.rf.ace49db0814b7fd2fa069ef9a89d08ec.txt 87B
1343_jpg.rf.c3e2c8418cb7b2f8cb1151c8638b1f83.txt 87B
1232_jpg.rf.01cdbd3cbab681ae2b360f923003d6e4.txt 87B
95_jpg.rf.ade2897283ea3edffaf634403afa56b8.txt 87B
293_jpg.rf.a60ce3dcc2edd6f2c9a59a48a09c30c5.txt 87B
569_jpg.rf.326a0848d626a707528ec3bf69cba31d.txt 87B
226_jpg.rf.fda618810505691d70bc94d1086a05f6.txt 87B
1393_jpg.rf.8928167b2c50e9dd7704a2305efa6262.txt 87B
221_jpg.rf.51966fe6fb265b4a1b8c4fbcfac7ba5e.txt 87B
439_jpg.rf.92dfcfc5920fe8b2f8f4195bb5c39891.txt 87B
1293_jpg.rf.d18c3174961ffebe544c9c52be8f7b55.txt 87B
743_jpg.rf.7e4aebc44f3cd07fb3c419a496176bd2.txt 87B
501_jpg.rf.79f56155bebe75478e600d81009929cb.txt 87B
585_jpg.rf.0376ea2896ab29469819ab93e14cebfe.txt 87B
539_jpg.rf.eeaf7a62f0ac52d6e8b47e0e84c52c03.txt 87B
495_jpg.rf.28a232f447eb08cc70620c9255d3df3f.txt 87B
39_jpg.rf.d712ea2fe1e7e776b78ebef40265d8dc.txt 87B
254_jpg.rf.97198cf49fcd81f5b0fa7666759f07f9.txt 87B
228_jpg.rf.7d77b310078610320dbe4ad5ce9965e9.txt 87B
501_jpg.rf.f7967e556910d5805cb4db4c97ab2ec7.txt 87B
1318_jpg.rf.fa29ee6a04b2eefb581bb3dea82582c4.txt 87B
516_jpg.rf.82e76c6b2b62fe748fea9e2cfab6f385.txt 87B
242_jpg.rf.4fd3f9b9a8b5ba0f60891f9ae7528454.txt 87B
596_jpg.rf.2946883a102d26eb3be39ea4d2a8ca78.txt 87B
126_jpg.rf.e27c70b8956303bef26c44886efcc2c2.txt 87B
1408_jpg.rf.399d2d2317e27ed52ed441a92be29a71.txt 87B
791_jpg.rf.2d3cd6014910d30d62b0eb22668b763c.txt 87B
1302_jpg.rf.77074b5a8036ffd61cf04112235d9a67.txt 87B
24_jpg.rf.a470bb66c4a5735b99606d7f89d8a4b3.txt 87B
1429_jpg.rf.7b9bb918a8ad68c0077d69c4866fbb5c.txt 87B
296_jpg.rf.816e89e68b175d7dc41e1ff6a75a34a0.txt 87B
133_jpg.rf.df9636a0e71222aa65c8e454d23586c7.txt 87B
559_jpg.rf.6e24e323dffadf65e1832e8757918e06.txt 87B
12_jpg.rf.6cbc1477fe236fe2e91fd689dd4fd9d8.txt 87B
370_jpg.rf.78a59f09b88859e496fa75940feae353.txt 87B
559_jpg.rf.0c352170e97946014ae90a901436bfed.txt 87B
160_jpg.rf.501670ffd3428158777e5d1914bb78ac.txt 87B
266_jpg.rf.9880fb581028efb6df8ab01b62187092.txt 87B
543_jpg.rf.b5c64af10b1492bd42546434f9b2cc42.txt 87B
1233_jpg.rf.51c8a0b0d368576e7f76d7f27d093a0d.txt 87B
242_jpg.rf.b8f47fd99a54cc0fa1a0ed22568576bf.txt 87B
174_jpg.rf.f7b21633609786771de9a32c2c24e185.txt 87B
1308_jpg.rf.c9fe5f940a27ef119893004e26ad5406.txt 87B
577_jpg.rf.64795574f2fd8a5362086fdfa86957d2.txt 85B
233_jpg.rf.183519f2453c7eaf011a6ffe9395bc9c.txt 85B
608_jpg.rf.23f8cb18a3143c486fdb245d086d8fd9.txt 85B
1400_jpg.rf.dfb1568864832573e55ea2d4a1114721.txt 85B
214_jpg.rf.d6a80783c0c48858711e78cb588eba25.txt 85B
1288_jpg.rf.4811ff384c33a86842a7265de4ad12fb.txt 85B
598_jpg.rf.5f29441cc6cbdadddabefbc462b59ff6.txt 85B
116_jpg.rf.b6b16868deb5a848b72f24aebcedaacb.txt 85B
581_jpg.rf.9a032afc612643e4da352d73a64b9ef2.txt 85B
377_jpg.rf.1b14430d4f36fa7f9ec57396d491b741.txt 85B
572_jpg.rf.0e577b70c111c5bb36bf23d2ff1af198.txt 85B
77_jpg.rf.2d523f9b2738ad088c993a136f1b906c.txt 85B
294_jpg.rf.0d3cf83b9423a3781c8ed634cf467f01.txt 85B
12_jpg.rf.afff4ceacf6800000be54b91687862b3.txt 85B
103_jpg.rf.79a5555bad00a5d8fbe87bed98873bd0.txt 85B
274_jpg.rf.e7f16a332658fea5d9402156e747bc73.txt 85B
1342_jpg.rf.78ffad29e4f970668ba81fabd83f6014.txt 85B
721_jpg.rf.856970826b292ff2c5a8b13e99cbaaa9.txt 85B
498_jpg.rf.86f5ebb1690f686607befa38f7683ab1.txt 85B
564_jpg.rf.245f8b2072fd78f8867e36fee5d111f3.txt 85B
85_jpg.rf.bc73f0a62f9b397e9f8dcf7a7b88ac5d.txt 85B
66_jpg.rf.8cbc3efe59f925c3850f4e055d2db87d.txt 85B
551_jpg.rf.48560138b86ed5ff56fd103bc18b66db.txt 85B
1281_jpg.rf.3fa6984f31ef91b30dadbe66aff3fbd0.txt 85B
116_jpg.rf.f934a4d26a68b709adfd1dde3e4849ea.txt 85B
396_jpg.rf.73cecf86ef9aa2a4a58f4fd8c9847a9a.txt 85B
272_jpg.rf.e456c5bc2953cd3dcaf501f8b40bd738.txt 85B
1413_jpg.rf.b4f9e017ebe280a1ca9e960c92c74879.txt 85B
756_jpg.rf.070390d365a08cfa57da343cf1121724.txt 85B
1427_jpg.rf.46d47ccd2d18613d09260c52ed1ce0d2.txt 85B
293_jpg.rf.65ce23ce111b5d5d4f49bdd8a14a3dec.txt 85B
184_jpg.rf.4173112b5217f343f59cf9a9868113e6.txt 85B
143_jpg.rf.e6ee2cf4b736b0800146caced0510a06.txt 85B
460_jpg.rf.8b82fc274eb4f08d96d3852a5fa95687.txt 85B
1347_jpg.rf.68283a2f59152214d596d198fa902e38.txt 85B
共 2000 条
- 1
- 2
- 3
- 4
- 5
- 6
- 20
资源评论
stsdddd
- 粉丝: 3w+
- 资源: 929
上传资源 快速赚钱
- 我的内容管理 展开
- 我的资源 快来上传第一个资源
- 我的收益 登录查看自己的收益
- 我的积分 登录查看自己的积分
- 我的C币 登录后查看C币余额
- 我的收藏
- 我的下载
- 下载帮助
最新资源
- shopex升级补丁只针对 485.78660版本升级至485.80603版本 其它版本的请勿使用!
- 基于Django和HTML的新疆地区水稻产量影响因素可视化分析系统(含数据集)
- windows conan2应用构建模板
- 3_base.apk.1
- 基于STM32F103C8T6的4g模块(air724ug)
- 基于Java技术的ASC学业支持中心并行项目开发设计源码
- 基于Java和微信支付的wxmall开源卖票商城设计源码
- 基于Java和前端技术的东软环保公众监督系统设计源码
- 基于Python、HTML、CSS的crawlerdemo软件工程实训爬虫设计源码
- 基于多智能体深度强化学习的边缘协同任务卸载方法设计源码
资源上传下载、课程学习等过程中有任何疑问或建议,欢迎提出宝贵意见哦~我们会及时处理!
点击此处反馈
安全验证
文档复制为VIP权益,开通VIP直接复制
信息提交成功