<div align="center">
<p>
<a align="left" href="https://ultralytics.com/yolov5" target="_blank">
<img width="850" src="https://github.com/ultralytics/yolov5/releases/download/v1.0/splash.jpg"></a>
</p>
<br>
<div>
<a href="https://github.com/ultralytics/yolov5/actions"><img src="https://github.com/ultralytics/yolov5/workflows/CI%20CPU%20testing/badge.svg" alt="CI CPU testing"></a>
<a href="https://zenodo.org/badge/latestdoi/264818686"><img src="https://zenodo.org/badge/264818686.svg" alt="YOLOv5 Citation"></a>
<a href="https://hub.docker.com/r/ultralytics/yolov5"><img src="https://img.shields.io/docker/pulls/ultralytics/yolov5?logo=docker" alt="Docker Pulls"></a>
<br>
<a href="https://colab.research.google.com/github/ultralytics/yolov5/blob/master/tutorial.ipynb"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"></a>
<a href="https://www.kaggle.com/ultralytics/yolov5"><img src="https://kaggle.com/static/images/open-in-kaggle.svg" alt="Open In Kaggle"></a>
<a href="https://join.slack.com/t/ultralytics/shared_invite/zt-w29ei8bp-jczz7QYUmDtgo6r6KcMIAg"><img src="https://img.shields.io/badge/Slack-Join_Forum-blue.svg?logo=slack" alt="Join Forum"></a>
</div>
<br>
<div align="center">
<a href="https://github.com/ultralytics">
<img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-social-github.png" width="2%"/>
</a>
<img width="2%" />
<a href="https://www.linkedin.com/company/ultralytics">
<img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-social-linkedin.png" width="2%"/>
</a>
<img width="2%" />
<a href="https://twitter.com/ultralytics">
<img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-social-twitter.png" width="2%"/>
</a>
<img width="2%" />
<a href="https://youtube.com/ultralytics">
<img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-social-youtube.png" width="2%"/>
</a>
<img width="2%" />
<a href="https://www.facebook.com/ultralytics">
<img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-social-facebook.png" width="2%"/>
</a>
<img width="2%" />
<a href="https://www.instagram.com/ultralytics/">
<img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-social-instagram.png" width="2%"/>
</a>
</div>
<br>
<p>
YOLOv5 ð is a family of object detection architectures and models pretrained on the COCO dataset, and represents <a href="https://ultralytics.com">Ultralytics</a>
open-source research into future vision AI methods, incorporating lessons learned and best practices evolved over thousands of hours of research and development.
</p>
<!--
<a align="center" href="https://ultralytics.com/yolov5" target="_blank">
<img width="800" src="https://github.com/ultralytics/yolov5/releases/download/v1.0/banner-api.png"></a>
-->
</div>
## <div align="center">Documentation</div>
See the [YOLOv5 Docs](https://docs.ultralytics.com) for full documentation on training, testing and deployment.
## <div align="center">Quick Start Examples</div>
<details open>
<summary>Install</summary>
[**Python>=3.6.0**](https://www.python.org/) is required with all
[requirements.txt](https://github.com/ultralytics/yolov5/blob/master/requirements.txt) installed including
[**PyTorch>=1.7**](https://pytorch.org/get-started/locally/):
<!-- $ sudo apt update && apt install -y libgl1-mesa-glx libsm6 libxext6 libxrender-dev -->
```bash
$ git clone https://github.com/ultralytics/yolov5
$ cd yolov5
$ pip install -r requirements.txt
```
</details>
<details open>
<summary>Inference</summary>
Inference with YOLOv5 and [PyTorch Hub](https://github.com/ultralytics/yolov5/issues/36). Models automatically download
from the [latest YOLOv5 release](https://github.com/ultralytics/yolov5/releases).
```python
import torch
# Model
model = torch.hub.load('ultralytics/yolov5', 'yolov5s') # or yolov5m, yolov5l, yolov5x, custom
# Images
img = 'https://ultralytics.com/images/zidane.jpg' # or file, Path, PIL, OpenCV, numpy, list
# Inference
results = model(img)
# Results
results.print() # or .show(), .save(), .crop(), .pandas(), etc.
```
</details>
<details>
<summary>Inference with detect.py</summary>
`detect.py` runs inference on a variety of sources, downloading models automatically from
the [latest YOLOv5 release](https://github.com/ultralytics/yolov5/releases) and saving results to `runs/detect`.
```bash
$ python detect.py --source 0 # webcam
img.jpg # image
vid.mp4 # video
path/ # directory
path/*.jpg # glob
'https://youtu.be/Zgi9g1ksQHc' # YouTube
'rtsp://example.com/media.mp4' # RTSP, RTMP, HTTP stream
```
</details>
<details>
<summary>Training</summary>
Run commands below to reproduce results
on [COCO](https://github.com/ultralytics/yolov5/blob/master/data/scripts/get_coco.sh) dataset (dataset auto-downloads on
first use). Training times for YOLOv5s/m/l/x are 2/4/6/8 days on a single V100 (multi-GPU times faster). Use the
largest `--batch-size` your GPU allows (batch sizes shown for 16 GB devices).
```bash
$ python train.py --data coco.yaml --cfg yolov5s.yaml --weights '' --batch-size 64
yolov5m 40
yolov5l 24
yolov5x 16
```
<img width="800" src="https://user-images.githubusercontent.com/26833433/90222759-949d8800-ddc1-11ea-9fa1-1c97eed2b963.png">
</details>
<details open>
<summary>Tutorials</summary>
* [Train Custom Data](https://github.com/ultralytics/yolov5/wiki/Train-Custom-Data) ð RECOMMENDED
* [Tips for Best Training Results](https://github.com/ultralytics/yolov5/wiki/Tips-for-Best-Training-Results) âï¸
RECOMMENDED
* [Weights & Biases Logging](https://github.com/ultralytics/yolov5/issues/1289) ð NEW
* [Roboflow for Datasets, Labeling, and Active Learning](https://github.com/ultralytics/yolov5/issues/4975) ð NEW
* [Multi-GPU Training](https://github.com/ultralytics/yolov5/issues/475)
* [PyTorch Hub](https://github.com/ultralytics/yolov5/issues/36) â NEW
* [TorchScript, ONNX, CoreML Export](https://github.com/ultralytics/yolov5/issues/251) ð
* [Test-Time Augmentation (TTA)](https://github.com/ultralytics/yolov5/issues/303)
* [Model Ensembling](https://github.com/ultralytics/yolov5/issues/318)
* [Model Pruning/Sparsity](https://github.com/ultralytics/yolov5/issues/304)
* [Hyperparameter Evolution](https://github.com/ultralytics/yolov5/issues/607)
* [Transfer Learning with Frozen Layers](https://github.com/ultralytics/yolov5/issues/1314) â NEW
* [TensorRT Deployment](https://github.com/wang-xinyu/tensorrtx)
</details>
## <div align="center">Environments</div>
Get started in seconds with our verified environments. Click each icon below for details.
<div align="center">
<a href="https://colab.research.google.com/github/ultralytics/yolov5/blob/master/tutorial.ipynb">
<img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-colab-small.png" width="15%"/>
</a>
<a href="https://www.kaggle.com/ultralytics/yolov5">
<img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-kaggle-small.png" width="15%"/>
</a>
<a href="https://hub.docker.com/r/ultralytics/yolov5">
<img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-docker-small.png" width="15%"/>
</a>
<a href="https://github.com/ultralytics/yolov5/wiki/AWS-Quickstart">
<img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-aws-small.png" width="15%"/>
</a>
<a href="https://githu
没有合适的资源?快使用搜索试试~ 我知道了~
yolov5绝缘子缺陷检测+绝缘子缺陷检测权重+pyqt界面+数据集.zip
共500个文件
yaml:63个
jpg:53个
py:51个
1.该资源内容由用户上传,如若侵权请联系客服进行举报
2.虚拟产品一经售出概不退款(资源遇到问题,请及时私信上传者)
2.虚拟产品一经售出概不退款(资源遇到问题,请及时私信上传者)
版权申诉
5星 · 超过95%的资源 1 下载量 97 浏览量
2023-10-15
22:01:11
上传
评论
收藏 354.21MB ZIP 举报
温馨提示
yolov5绝缘子缺陷检测+绝缘子缺陷检测权重+pyqt界面+数据集, 已获导师指导并通过的97分的高分期末大作业项目,可作为课程设计和期末大作业,下载即用无需修改,项目完整确保可以运行。 yolov5绝缘子缺陷检测+绝缘子缺陷检测权重+pyqt界面+数据集, 已获导师指导并通过的97分的高分期末大作业项目,可作为课程设计和期末大作业,下载即用无需修改,项目完整确保可以运行。yolov5绝缘子缺陷检测+绝缘子缺陷检测权重+pyqt界面+数据集, 已获导师指导并通过的97分的高分期末大作业项目,可作为课程设计和期末大作业,下载即用无需修改,项目完整确保可以运行。yolov5绝缘子缺陷检测+绝缘子缺陷检测权重+pyqt界面+数据集, 已获导师指导并通过的97分的高分期末大作业项目,可作为课程设计和期末大作业,下载即用无需修改,项目完整确保可以运行。yolov5绝缘子缺陷检测+绝缘子缺陷检测权重+pyqt界面+数据集, 已获导师指导并通过的97分的高分期末大作业项目,可作为课程设计和期末大作业,下载即用无需修改,项目完整确保可以运行。yolov5绝缘子缺陷检测+绝缘子缺陷检测权重+pyq
资源推荐
资源详情
资源评论
收起资源包目录
yolov5绝缘子缺陷检测+绝缘子缺陷检测权重+pyqt界面+数据集.zip (500个子文件)
events.out.tfevents.1648517018.chenming.196514.0 953KB
events.out.tfevents.1648477194.chenming.98644.0 871KB
events.out.tfevents.1648466002.chenming.69706.0 789KB
events.out.tfevents.1678866701.chenmingsong.12680.0 222KB
events.out.tfevents.1678866535.chenmingsong.4364.0 88B
002211813e08652a05c10dc599f6112b93ebae 19KB
04e989c2a55c104f23b942f546d2b050bd0f2e 153B
05a867e5644be8cc7549b89cad89d5e84573d0 413B
0816520a5f4f2745230ac24a7f6f4ec1964142 213B
0924343f009e8bf24342cba87d69f9557a0db8 176B
0b350afc43d63dfe40deb428429b9602805e83 12KB
0b8b4e81735edd67e5cb913d29b5839b6f9a8f 303B
0c28e764c12479f14b3bdddc2ddd1e075f137b 4KB
0c71d32551789d57e5f44fd936636ecb4e3414 697B
0d7c447527f1116e0edb3e1c096904fe3302f1 627B
0e0c65e63da1535d1715f877bfd9114d0422bf 5KB
0fa9093ed937425a74dda995e6795362be1798 23KB
1045a74be14d3f092e08344a83fa5a188799b0 364B
10c8ebbda4c8f2f2c03f064b73f8f51d3a7425 500B
132cb7bd07532849e44cf25e74813fd6251914 18KB
1538e54be7e458efd2bc02a485b3d27f78d52f 609B
1731c979a121ab8227280351b70d6062efd983 679B
18085f51f3d62ee98f5e4a1d0a691cf24ac410 177KB
19a83cfbdf09bea634c3bd9fca737c0b1dd505 436B
19e4d9d88f2705699ff220815f1422d051d7e2 8KB
1d2ca6b581643a60a50a358b2470f65da2c2c8 4KB
1e9a132ac6ba912dce03fae48a8ec39e9f7c77 7KB
2063e4ec471fd56d42a433d109a5fa7a5cb3a7 79B
21f30f93ca37578ce45366a1ddbe3f3eadaa79 227B
24b83b56bc7e55e1d51fde2b318bb19911b44b 3KB
251a9266a2a00e6c9add2f399b53a955a8f597 4KB
259f17f4f8cc4bc7e4357210708a9d902f0329 1KB
25ce58b6b14b10d420d9b1be3ef067e03cabea 12KB
25dd1b9d2ba06b48a1c6c65b705d53ab783693 1KB
26acbd92043458311dd949cc09c0195cd35400 852B
26da7b6a269a4e71e274ef090d5d5cbc875242 192B
289104eb4807112e1a3f19152b80c80ed5f5ea 6KB
2b45088dc4b3ff13f3d8f95ede967ebba09317 612B
2b9b9a1b95f4f2c4c87755cc2abe9a258f04eb 7KB
2c2cb699e3cf261da462ec7dd20c0ffb7aaad3 693B
2c84c130c7b5d3dcfecbc6fafe8a4fbc0c193a 1KB
2d98bdc36df092299887d8f50e3c1f6f96c683 3KB
2f5845f884b3e089733591825c1c1a70d34041 696B
327702e83ea50d82916fcf6bc2731978121c99 614KB
3401e8997449a6e3dff9c1b30cc88a279c3316 146B
3485e2079abe227664474fafe83831ee3be237 1KB
351bdb81586b05d456708ba20bd8c0a659e07f 19KB
3720a65be5a35acf661c2428883528710ed649 308B
389e9940586765dbcaa1e172595df5d3854628 2KB
399a3a5ac6c9c8c5c116a9abd1c655dc19ff82 55B
3a756d60a34da5dc6ff607402c0614c5e65d71 3KB
3ad16a0f58cf48bfc71afdbd1a548bc5ffe8db 623B
3b7db4e49cb5d89c0b18d90f112a1c6386cc2a 13KB
3ba519f3432aa2344ba422d659445f4bb9787d 176B
3d21688ad22e42423a05650ff05de2a6a87ce8 190B
3e311165c785f000eb7493ff8fb662d06a3f83 473KB
3e5514a06e77e5fb86e86d08549b5f74fa8389 2KB
3e9c6fbf9f7f00c9e7f2a24bc8513a9d5717ea 568B
429c0787f7c374c17d8de9ec460f2de84e93d4 343KB
4388ca94c7b1729ba9c7f86ffbf43b20d6e74a 12.58MB
450d5f6e9acd550fec23acf3b05c5b52574f61 595B
469b8dc1fb95295a45d048ae140db5ca16b595 16KB
4815f5cfa03329618c4a1801f16ce68ec666e0 614B
482dd37bea9762963704b0d28477248d6c242f 7KB
4b240e6c36658436f426531485843d4ce0e5a6 632B
4c18993417309ddd6b4d37e80f1965fcf7973d 3KB
4c8e503e0e06199f4d9cd8f522fbf701758371 3KB
4ceeafca64556613c2022b8c4c27af9be7bc82 227B
50f55ec8caf1cca589a3e7d8b45b5826361115 529B
51ca3e18868d9f1f61ad437409d4b08fe6da04 148B
52c73fe6d44dcb7ede43103b2af609bba38dfb 622B
52f30a264d66403f6e9be7bb720171d7f1d330 4KB
536605faed599efe2dfd34db52888bfc631b1c 49B
543272ad6c6525fd67eb9dc3e6b8179773b23a 12KB
5467cc4502b74e527beeb03a605f939acc5852 15KB
54893896fda4174d317a6803a1db9ca76a1915 295B
55032ceb6a107c98e1f7e5deeebc72f16f8251 111KB
55513223204f376cedf636a54fe93af5e4c233 645KB
55618f475104e9858b81470339558156c94e13 450B
569db3f81da6c0775de163254eb08ef0680f9d 14KB
56b7c1186d6ad278957bbd6e976c3a0f169a30 145B
586cc63faedd91b03ff0c91f99006736034759 839B
58f7cb604cc618069c838d6ee0d71d92324e2d 386B
5ce2da2d6447d11dfe32bfb846c3d5b199fc99 142B
5df743b7ba6904dc25d954aff3d77df2f6ad4d 127B
6059bc30bff425fd3a7b2ee83a40a642a8e8c6 561B
6086b2a89a04f1c863aee02607b7712f5f77b9 162B
6180b564e87d919d67f618bfc5b368c087754b 592B
6378f4ed99d38f0575c77f18bf9aba72ff02f9 5KB
63a26066e24032f8ddf21a1bee46dcbba48fd3 14KB
65580acee5afed347d67122b1b991e05cf7c24 7KB
65cb8fc6cb0eab505312c9119db534f7caab17 218B
68c16658501959a3e8ed1b0beaf47413cfe936 310KB
68fb197d4479b3b6dec6e85bd5cbaf433a87c5 437KB
6982158ce82d4e4ed7241c469b6f0166f0db49 645B
69acc48d89b71e295a565b0519bea6eb6f29c1 348B
6be75634de5c12c2c3461065e5e647ea555e09 49B
6cd4dac11ca01b3906827add386f91a1a267f2 104B
6eef48fb7c45ca64bd8bbf427c316612e2a2e0 7KB
6f143b5e892a9fa144d69c0825102223c90bf1 2.58MB
共 500 条
- 1
- 2
- 3
- 4
- 5
资源评论
- kefu1992024-05-20资源很实用,内容详细,值得借鉴的内容很多,感谢分享。
猰貐的新时代
- 粉丝: 1w+
- 资源: 2546
上传资源 快速赚钱
- 我的内容管理 展开
- 我的资源 快来上传第一个资源
- 我的收益 登录查看自己的收益
- 我的积分 登录查看自己的积分
- 我的C币 登录后查看C币余额
- 我的收藏
- 我的下载
- 下载帮助
最新资源
资源上传下载、课程学习等过程中有任何疑问或建议,欢迎提出宝贵意见哦~我们会及时处理!
点击此处反馈
安全验证
文档复制为VIP权益,开通VIP直接复制
信息提交成功