# YOLOv8 ML backend for the Label Studio
YOLOv8 interactive ML-assisted labeling, facilitating faster
annotation for **image detection**, ***instance* image segmentation**.
Tested against Label Studio 1.13.1.
## Project Structure
- **Dockerfile**: The Dockerfile for building the backend container.
- **docker-compose.yml**: The docker-compose file for running the backend.
- **_wsgi.py**: WSGI app initializer.
- **start.sh**: bash script to start the whole process.
- **model.py**: The Python code for the ML backend model.
- **requirements.txt**: The list of Python dependencies for the backend.
## Setup process
Before you begin:
* Ensure git is installed
* Ensure Docker Compose is installed.
### 1. Install Label Studio
Launch Label Studio. You can follow the guide from the [official documentation](https://labelstud.io/guide/install.html) or use the following commands:
If you're using local file serving, be sure to [get a copy of the API token](https://labelstud.io/guide/user_account#Access-token) from
Label Studio to connect the model.
### 2. Create a Label Studio project
Create a new project.
In the project **Settings** set up the **Labeling Interface** for **image detection** (RectangleLabels) or **image segmentation** (PolygonLabels).
### 3. Install label-studio-yolov8-backend
Download the Label Studio YOLOv8 backend repository.
```
git clone https://github.com/seblful/label-studio-yolov8-backend.git
cd label-studio-yolov8-backend
```
Configure parameters in `.env` file:
```
LABEL_STUDIO_URL=<IPv4 Address> (check your ipconfig)
LABEL_STUDIO_API_KEY=<Label Studio API token>
TASK_TYPE=<segmentation> or <detection>
```
### 4. Start the servers
```
docker compose up
```
### 5. Upload tasks
Upload images directly to Label Studio using the Label Studio interface.
### 6. Add model in project settings
From the project settings, select the **Model** page and click [**Connect Model**](https://labelstud.io/guide/ml#Connect-the-model-to-Label-Studio).
Add the URL `http://locallhost:9090` and save the model as an ML backend.
### 7. Label in interactive mode
To use this functionality, activate **Auto-Annotation** for drawing boxes.
## Training
Model training is **not included** in this project. This will probably be added later.
## Contributing
Contributions to this project are welcome. To contribute, please submit an issue or pull request.
没有合适的资源?快使用搜索试试~ 我知道了~
温馨提示
Label Studio 的 YOLOv8 ML 后端YOLOv8 交互式 ML 辅助标记,有助于更快地对图像检测、实例图像分割进行注释。针对 Label Studio 1.13.1 进行测试。项目结构Dockerfile用于构建后端容器的Dockerfile。docker-compose.yml用于运行后端的docker-compose文件。_wsgi.pyWSGI应用程序初始化程序。start.sh启动整个过程的 bash 脚本。model.pyML后端模型的 Python 代码。requirements.txt后端的 Python 依赖项列表。设置过程开始之前确保已安装 git确保已安装 Docker Compose。1.安装Label Studio启动 Label Studio。您可以按照官方文档中的指南进行操作,也可以使用以下命令如果您使用本地文件服务,请务必从 Label Studio获取 API 令牌的副本以连接模型。2. 创建 Label Studio 项目创建一个新项目。在项目设置中设置用于图像检
资源推荐
资源详情
资源评论
收起资源包目录
Label Studio 工具的 ML 后端。后端使用 YOLOv8 模型进行图像分割或对象检测。.zip (11个子文件)
_wsgi.py 4KB
标签.txt 54B
model.py 6KB
docker-compose.yml 891B
start.sh 149B
Dockerfile 999B
资源内容.txt 950B
requirements.txt 197B
.gitignore 109B
.dockerignore 52B
README.md 2KB
共 11 条
- 1
资源评论
赵闪闪168
- 粉丝: 1564
- 资源: 3662
上传资源 快速赚钱
- 我的内容管理 展开
- 我的资源 快来上传第一个资源
- 我的收益 登录查看自己的收益
- 我的积分 登录查看自己的积分
- 我的C币 登录后查看C币余额
- 我的收藏
- 我的下载
- 下载帮助
最新资源
资源上传下载、课程学习等过程中有任何疑问或建议,欢迎提出宝贵意见哦~我们会及时处理!
点击此处反馈
安全验证
文档复制为VIP权益,开通VIP直接复制
信息提交成功