# Traffic Flow Prediction
Traffic Flow Prediction with Neural Networks(SAEs、LSTM、GRU).
## Requirement
- Python 3.6
- Tensorflow-gpu 1.5.0
- Keras 2.1.3
- scikit-learn 0.19
## Train the model
**Run command below to train the model:**
```
python train.py --model model_name
```
You can choose "lstm", "gru" or "saes" as arguments. The ```.h5``` weight file was saved at model folder.
## Experiment
Data are obtained from the Caltrans Performance Measurement System (PeMS). Data are collected in real-time from individual detectors spanning the freeway system across all major metropolitan areas of the State of California.
device: Tesla K80
dataset: PeMS 5min-interval traffic flow data
optimizer: RMSprop(lr=0.001, rho=0.9, epsilon=1e-06)
batch_szie: 256
**Run command below to run the program:**
```
python main.py
```
These are the details for the traffic flow prediction experiment.
| Metrics | MAE | MSE | RMSE | MAPE | R2 | Explained variance score |
| ------- |:---:| :--:| :--: | :--: | :--: | :----------------------: |
| LSTM | 7.21 | 98.05 | 9.90 | 16.56% | 0.9396 | 0.9419 |
| GRU | 7.20 | 99.32 | 9.97| 16.78% | 0.9389 | 0.9389|
| SAEs | 7.06 | 92.08 | 9.60 | 17.80% | 0.9433 | 0.9442 |
![evaluate](/images/eva.png)
## Reference
@article{SAEs,
title={Traffic Flow Prediction With Big Data: A Deep Learning Approach},
author={Y Lv, Y Duan, W Kang, Z Li, FY Wang},
journal={IEEE Transactions on Intelligent Transportation Systems, 2015, 16(2):865-873},
year={2015}
}
@article{RNN,
title={Using LSTM and GRU neural network methods for traffic flow prediction},
author={R Fu, Z Zhang, L Li},
journal={Chinese Association of Automation, 2017:324-328},
year={2017}
}
## Copyright
See [LICENSE](LICENSE) for details.
没有合适的资源?快使用搜索试试~ 我知道了~
温馨提示
基于神经网络(堆栈自编码SAEs、长短时神经网络LSTM、门循环单元GRU)的交通流预测 Python 3.6 Tensorflow-gpu 1.5.0 Keras 2.1.3 scikit-learn 0.19 交通流预测
资源推荐
资源详情
资源评论
收起资源包目录
TrafficFlowPrediction(交通流预测)(python代码).zip (17个子文件)
TrafficFlowPrediction(交通流预测)(python代码)
main.py 3KB
images
eva.png 69KB
SAEs.png 40KB
GRU.png 22KB
LSTM.png 22KB
data
train.csv 195KB
test.csv 108KB
data.py 1KB
model
saes.h5 2.52MB
gru loss.csv 47KB
model.py 2KB
lstm loss.csv 47KB
saes loss.csv 47KB
lstm.h5 414KB
gru.h5 316KB
train.py 3KB
README.md 2KB
共 17 条
- 1
资源评论
- logic_cos_mos2022-05-29用户下载后在一定时间内未进行评价,系统默认好评。
资源存储库
- 粉丝: 1w+
- 资源: 396
上传资源 快速赚钱
- 我的内容管理 展开
- 我的资源 快来上传第一个资源
- 我的收益 登录查看自己的收益
- 我的积分 登录查看自己的积分
- 我的C币 登录后查看C币余额
- 我的收藏
- 我的下载
- 下载帮助
安全验证
文档复制为VIP权益,开通VIP直接复制
信息提交成功