# Traffic Flow Prediction
Traffic Flow Prediction with Neural Networks(SAEs、LSTM、GRU).
## Requirement
- Python 3.6
- Tensorflow-gpu 1.5.0
- Keras 2.1.3
- scikit-learn 0.19
## Train the model
**Run command below to train the model:**
```
python train.py --model model_name
```
You can choose "lstm", "gru" or "saes" as arguments. The ```.h5``` weight file was saved at model folder.
## Experiment
Data are obtained from the Caltrans Performance Measurement System (PeMS). Data are collected in real-time from individual detectors spanning the freeway system across all major metropolitan areas of the State of California.
device: Tesla K80
dataset: PeMS 5min-interval traffic flow data
optimizer: RMSprop(lr=0.001, rho=0.9, epsilon=1e-06)
batch_szie: 256
**Run command below to run the program:**
```
python main.py
```
These are the details for the traffic flow prediction experiment.
| Metrics | MAE | MSE | RMSE | MAPE | R2 | Explained variance score |
| ------- |:---:| :--:| :--: | :--: | :--: | :----------------------: |
| LSTM | 7.21 | 98.05 | 9.90 | 16.56% | 0.9396 | 0.9419 |
| GRU | 7.20 | 99.32 | 9.97| 16.78% | 0.9389 | 0.9389|
| SAEs | 7.06 | 92.08 | 9.60 | 17.80% | 0.9433 | 0.9442 |
![evaluate](/images/eva.png)
## Reference
@article{SAEs,
title={Traffic Flow Prediction With Big Data: A Deep Learning Approach},
author={Y Lv, Y Duan, W Kang, Z Li, FY Wang},
journal={IEEE Transactions on Intelligent Transportation Systems, 2015, 16(2):865-873},
year={2015}
}
@article{RNN,
title={Using LSTM and GRU neural network methods for traffic flow prediction},
author={R Fu, Z Zhang, L Li},
journal={Chinese Association of Automation, 2017:324-328},
year={2017}
}
## Copyright
See [LICENSE](LICENSE) for details.
资源存储库
- 粉丝: 1w+
- 资源: 396
最新资源
- 蚁群算法小程序-matlab
- 粒子群算法小程序-matlab
- 《新能源接入的电力市场主辅联合出清》 出清模型以考虑安全约束的机组组合模型(SCUC)和经济调度模型(SCED)组成 程序基于IEEE30节点编写,并接入风电机组参与电力市场,辅助服务市场为备用市场
- 个人创作原画作品,禁止盗用
- 遗传算法程序-matlab
- 游戏人物检测15-YOLO(v5至v11)、COCO、CreateML、Paligemma、TFRecord、VOC数据集合集.rar
- Windows 7安装NET补丁
- 高动态导航技术全套技术资料.zip
- cms测试练习项目(linux系统部署)
- 游戏人物检测15-YOLO(v5至v9)、COCO、CreateML、Darknet、Paligemma、TFRecord数据集合集.rar
- 名城小区物业管理-JAVA-基于Spring boot的名城小区物业管理系统设计实现(毕业论文+开题)
- 多媒体素材库-JAVA-基于springboot的多媒体素材库的开发与应用(毕业论文)
- 大学生心理健康管理-JAVA-基于springBoot大学生心理健康管理系统的设计与实现(毕业论文)
- 论坛系统-JAVA-基于SpringBoot的论坛系统设计与实现(毕业论文+开题+PPT)
- 游戏人物检测17-YOLO(v5至v11)、COCO、CreateML、Paligemma、TFRecord、VOC数据集合集.rar
- 大学生智能消费记账-JAVA-springboot205大学生智能消费记账系统的设计与实现(毕业论文)
资源上传下载、课程学习等过程中有任何疑问或建议,欢迎提出宝贵意见哦~我们会及时处理!
点击此处反馈