# -*- coding: utf-8 -*-
__Author__ = 'zhangbaojun'
__Time__ = '2018/6/6 14:00'
__File__ = 'data_volumn.py'
import pandas as pd
# time='DTCOLLECTTIME'
# volumn = 'SUM(D.NVOLUME)'
data = 'D:/Hisense/TrafficFlowPrediction/data/100211gaizao.csv'
df1 = pd.read_csv(data, encoding='utf-8', header=None, ).fillna(0)
df1.columns = ['time', 'volumn']
a = []
b=[]
# print(df1['time'].values[0][0:9])
for i in range(0, len(df1)):
if df1['time'].values[i][0:9] == '2018/1/20' or df1['time'].values[i][0:9] == '2018/1/21'\
or df1['time'].values[i][0:9] == '2018/1/27'or df1['time'].values[i][0:9] == '2018/1/28'\
or df1['time'].values[i][0:8] == '2018/2/3'or df1['time'].values[i][0:8] == '2018/2/4'\
or df1['time'].values[i][0:9] == '2018/2/10'or df1['time'].values[i][0:9] == '2018/2/15'\
or df1['time'].values[i][0:9] == '2018/2/16'or df1['time'].values[i][0:9] == '2018/2/17'\
or df1['time'].values[i][0:9] == '2018/2/18'or df1['time'].values[i][0:9] == '2018/2/19'\
or df1['time'].values[i][0:9] == '2018/2/20'or df1['time'].values[i][0:9] == '2018/2/21'\
or df1['time'].values[i][0:9] == '2018/2/25'\
or df1['time'].values[i][0:8] == '2018/3/3'or df1['time'].values[i][0:8] == '2018/3/4'\
or df1['time'].values[i][0:9] == '2018/3/10'or df1['time'].values[i][0:9] == '2018/3/11'\
or df1['time'].values[i][0:9] == '2018/3/17'or df1['time'].values[i][0:9] == '2018/3/18'\
or df1['time'].values[i][0:9] == '2018/3/24'or df1['time'].values[i][0:9] == '2018/3/25'\
or df1['time'].values[i][0:9] == '2018/3/31'or df1['time'].values[i][0:8] == '2018/4/1'\
or df1['time'].values[i][0:8] == '2018/4/5'or df1['time'].values[i][0:8] == '2018/4/6'\
or df1['time'].values[i][0:8] == '2018/4/7'or df1['time'].values[i][0:9] == '2018/4/14'\
or df1['time'].values[i][0:9] == '2018/4/15'or df1['time'].values[i][0:9] == '2018/4/21'\
or df1['time'].values[i][0:9] == '2018/4/22'or df1['time'].values[i][0:9] == '2018/4/29'\
or df1['time'].values[i][0:9] == '2018/4/28'or df1['time'].values[i][0:9] == '2018/4/30'\
or df1['time'].values[i][0:8] == '2018/5/1'or df1['time'].values[i][0:8] == '2018/5/5'\
or df1['time'].values[i][0:9] == '2018/5/6':
a.append([df1['time'].values[i],df1['volumn'].values[i]])
zhoumo=pd.DataFrame(a)
zhoumo.to_csv('100211_jiejiari.csv',index=None)
for i in range(0, len(df1)):
if df1['time'].values[i][0:9] != '2018/1/20' and df1['time'].values[i][0:9] != '2018/1/21'\
and df1['time'].values[i][0:9] != '2018/1/27'or df1['time'].values[i][0:9] != '2018/1/28'\
and df1['time'].values[i][0:8] != '2018/2/3'or df1['time'].values[i][0:8] != '2018/2/4'\
and df1['time'].values[i][0:9] != '2018/2/10'or df1['time'].values[i][0:9] != '2018/2/15'\
and df1['time'].values[i][0:9] != '2018/2/16'or df1['time'].values[i][0:9] != '2018/2/17'\
and df1['time'].values[i][0:9] != '2018/2/18'or df1['time'].values[i][0:9] != '2018/2/19'\
and df1['time'].values[i][0:9] != '2018/2/20'or df1['time'].values[i][0:9] != '2018/2/21'\
and df1['time'].values[i][0:9] != '2018/2/25'\
and df1['time'].values[i][0:8] != '2018/3/3'and df1['time'].values[i][0:8] != '2018/3/4'\
and df1['time'].values[i][0:9] != '2018/3/10'and df1['time'].values[i][0:9] != '2018/3/11'\
and df1['time'].values[i][0:9] != '2018/3/17'and df1['time'].values[i][0:9] != '2018/3/18'\
and df1['time'].values[i][0:9] != '2018/3/24'and df1['time'].values[i][0:9] != '2018/3/25'\
and df1['time'].values[i][0:9] != '2018/3/31'and df1['time'].values[i][0:8] != '2018/4/1'\
and df1['time'].values[i][0:8] != '2018/4/5'and df1['time'].values[i][0:8] != '2018/4/6'\
and df1['time'].values[i][0:8] != '2018/4/7'and df1['time'].values[i][0:9] != '2018/4/14'\
and df1['time'].values[i][0:9] != '2018/4/15'and df1['time'].values[i][0:9] != '2018/4/21'\
and df1['time'].values[i][0:9] != '2018/4/22'and df1['time'].values[i][0:9] != '2018/4/29'\
and df1['time'].values[i][0:9] != '2018/4/28'and df1['time'].values[i][0:9] != '2018/4/30'\
and df1['time'].values[i][0:8] != '2018/5/1'and df1['time'].values[i][0:8] != '2018/5/5'\
and df1['time'].values[i][0:9] != '2018/5/6':
b.append([df1['time'].values[i],df1['volumn'].values[i]])
zhoumo=pd.DataFrame(b)
zhoumo.to_csv('100211_gongzuori.csv',index=None)
# print(a)
# print(df1['time'].values[0])
没有合适的资源?快使用搜索试试~ 我知道了~
人工智能-项目实践-智慧交通-城市交通道路流量预测.zip
共72个文件
csv:41个
h5:13个
png:11个
1.该资源内容由用户上传,如若侵权请联系客服进行举报
2.虚拟产品一经售出概不退款(资源遇到问题,请及时私信上传者)
2.虚拟产品一经售出概不退款(资源遇到问题,请及时私信上传者)
版权申诉
5星 · 超过95%的资源 1 下载量 40 浏览量
2023-12-26
23:01:43
上传
评论 2
收藏 14.38MB ZIP 举报
温馨提示
人工智能-项目实践-智慧交通-城市交通道路流量预测 Traffic Flow Prediction Traffic Flow Prediction with Neural Networks(SAEs、LSTM、GRU). Requirement Python 3.6 Tensorflow-gpu 1.5.0 Keras 2.1.3 scikit-learn 0.19
资源推荐
资源详情
资源评论
收起资源包目录
人工智能-项目实践-智慧交通-城市交通道路流量预测.zip (72个子文件)
TrafficFlowPrediction-master
data
100211_jiejiari.csv 240KB
gongzuori.csv 66KB
5.7-5.9数据 8KB
zhoumo_test.csv 45KB
volumn-gaizao.csv 481KB
volumn.csv 554KB
100211_jiejiari_buhanling.csv 214KB
100211_jiejiari_buhanling_train.csv 121KB
zhoumo_train.csv 124KB
gongzuori_train.csv 202KB
100211_buhanling_train.csv 357KB
100211_gongzuori_buhanling_train.csv 236KB
gongzuori_test.csv 85KB
100211_gongzuori.csv 586KB
data.py 1KB
100211_gongzuori_buhanling_test.csv 118KB
100211data
100211_weekend_test.csv 60KB
100211_weekend_train.csv 121KB
100211_all_train.csv 357KB
100211_all_test.csv 178KB
100211_workdays_train.csv 236KB
100211_workdays_test(1).csv 118KB
100211gaizao.csv 586KB
train.csv 195KB
100211_gongzuori_buhanling.csv 524KB
data_volumn.py 5KB
100211_jiejiari_buhanling_test.csv 60KB
zhoumo.csv 43KB
test.csv 108KB
100211_buhanling_test.csv 178KB
model
100211_all
saes.h5 2.52MB
lstm.h5 414KB
gru loss.csv 47KB
gru.h5 316KB
saes loss.csv 47KB
lstm loss.csv 48KB
lstm.h5 414KB
100211_weekend
saes.h5 2.52MB
lstm.h5 414KB
gru loss.csv 47KB
gru.h5 316KB
saes loss.csv 47KB
lstm loss.csv 47KB
model.py 2KB
原始模型
saes.h5 2.52MB
lstm.h5 414KB
gru loss.csv 47KB
gru.h5 316KB
saes loss.csv 47KB
lstm loss.csv 47KB
lstm_loss.csv 47KB
100211_workdays
saes.h5 2.52MB
lstm.h5 414KB
gru loss.csv 48KB
gru.h5 316KB
saes loss.csv 48KB
lstm loss.csv 48KB
lstm loss.csv 47KB
images
pre_workdays_daily.png 49KB
原始图片
GRU.png 19KB
LSTM.png 19KB
SAEs.png 37KB
eva.png 69KB
GRU.png 19KB
LSTM.png 19KB
城市交通流量预测图.rar 206KB
pre_weekend.png 51KB
SAEs.png 37KB
pre_weekend_daily.png 48KB
pre_workdays.png 66KB
train.py 3KB
test.py 3KB
共 72 条
- 1
资源评论
- 快乐星猫爱打代码2024-04-28总算找到了想要的资源,搞定遇到的大问题,赞赞赞!
博士僧小星
- 粉丝: 2221
- 资源: 5988
下载权益
C知道特权
VIP文章
课程特权
开通VIP
上传资源 快速赚钱
- 我的内容管理 展开
- 我的资源 快来上传第一个资源
- 我的收益 登录查看自己的收益
- 我的积分 登录查看自己的积分
- 我的C币 登录后查看C币余额
- 我的收藏
- 我的下载
- 下载帮助
安全验证
文档复制为VIP权益,开通VIP直接复制
信息提交成功