# 3D U-Net model for segmentation of prostate structures
In this project, I use the [3D U-Net](https://arxiv.org/pdf/1606.06650.pdf) model to segment prostate structures from the [NCI-ISBI 2013 challenge dataset](https://wiki.cancerimagingarchive.net/display/Public/NCI-ISBI+2013+Challenge+-+Automated+Segmentation+of+Prostate+Structures). Given a 3D MRI scan, the aim is to automatically annotate the peripheral zone (PZ) and central gland (CG) regions, as shown in Figure 1.
![](./figs/segmentation_task.png)
*Figure 1:* Segmentation of prostate structures: MRI scan (left) and its annotation (right), where the peripheral zone (PZ) is coloured *dark gray*, central gland (CG) *bright gray*, and the background *black*.
## Dataset
| | # 3D scans | Total # scan slices |
| :--- | :---: | :---: |
| Training set | 60 | 1544 |
| Validation set | 10 | 261 |
| Test set | 10 | 271 |
## Data pre-processing
In the pre-processing stage, I performed histogram equalisation on the input MR images, in order to increase image contrast. As shown in Figure 2, this technique redistributes pixel intensity values to achieve linear cumulative distribution function.
![](./figs/histogram_equalisation.png)
*Figure 2:* Example of the employed histogram equalisation.
## Data augmentation
Following the 3D U-Net paper, besides random rotations, scalings, and gray value variations, I also performed a smooth dense deformation field augmentation (also known as elastic distortion/transformation). The same random deformation was applied to a voxel tile and its annotation, as shown in Figure 3.
All data augmentations were performed in the pre-processing stage as it allowed faster training, although at the expense of higher memory requirements (when compared to the augmentation on-the-fly).
![](./figs/elastic_deformation.png)
*Figure 3:* Example of elastic deformation used for data augmentation.
## Results
The best and the worst predictions are shown in Figures 4 and 5 respectively.
![](./figs/best_prediction.gif)
*Figure 4:* The test scan with the highest score (in terms of Intersection Over Union), i.e. the **best** prediction.
![](./figs/worst_prediction.gif)
*Figure 5:* The test scan with the lowest score (in terms of Intersection Over Union), i.e. the **worst** prediction.
__AtYou__
- 粉丝: 3506
- 资源: 2175
最新资源
- Java 8 字符串操作库 .zip
- Java 8 功能.zip
- Java , JavaFX , Kotlin 游戏库(引擎).zip
- IPinfo API 的官方 Java 库(IP 地理位置和其他类型的 IP 数据).zip
- IntelliJ IDEA 针对 Square 的 Java 和 Android 项目的代码样式设置 .zip
- Gradle,Maven 插件将 Java 应用程序打包为原生 Windows、MacOS 或 Linux 可执行文件并为其创建安装程序 .zip
- Google Maps API Web 服务的 Java 客户端库.zip
- Google Java 核心库.zip
- GitBook 教授 Javascript 编程基础知识.zip
- Generation.org 开发的 JAVA 模块练习.zip
资源上传下载、课程学习等过程中有任何疑问或建议,欢迎提出宝贵意见哦~我们会及时处理!
点击此处反馈