没有合适的资源?快使用搜索试试~ 我知道了~
TI-DS90CR485.pdf
试读
27页
5星 · 超过95%的资源 需积分: 0 1 下载量 174 浏览量
更新于2023-02-08
4
收藏 1.07MB PDF 举报
TI公司的DS90CR485是一款高性能的133MHz、48位通道链路串行器,设计用于在高速点对点应用中解决电磁干扰(EMI)和连接器尺寸问题。这款器件能够将24位双沿输入(LVCMOS/LVTTL)的数据在每个时钟周期内锁存为48位,并通过8条低电压差分信号(LVDS)流进行串行化。其工作速率高达6.384 Gbps,显著提高了数据传输效率。
DS90CR485支持66MHz至133MHz的输入时钟频率,具有预加重功能,能减少电缆负载效应,同时通过直流平衡技术减小了互符号干扰(ISI)失真。该器件的输入端口兼容3V的LVCMOS/LVTTL标准,功耗低,仅需2.5V电源。其流线型引脚布局简化了PCB布线,采用100引脚TQFP封装,符合TIA/EIA-644-A LVDS标准,确保了与行业标准的兼容性。
此外,DS90CR485还通过第9个LVDS链路并行传输相位锁定的发送时钟,与数据流同步。这种双沿输入触发方式在时钟的上升沿和下降沿捕获数据,减少了所需的引脚数量,降低了PCB设计复杂度。该器件与DS90CR486通道链路接收器兼容,并向后兼容其他通道链路接收器,如DS90CR482和DS90CR484。
总体而言,DS90CR485串行器是高带宽应用的理想选择,例如背板通信和电缆互连。它通过减少宽TTL总线到少量LVDS线路,有效地减小了电缆和连接器的尺寸和成本,从而降低了系统的整体成本。由于其高数据速率和优化的信号完整性特性,DS90CR485在需要大量数据传输的系统中表现出色,特别是在那些对空间和电磁兼容性有严格要求的应用中。
在设计过程中,应参考TI提供的数据手册、技术支持和社区资源,确保正确使用DS90CR485。请注意,数据表末尾的重要通知包含了关于可用性、保修、安全关键应用使用、知识产权问题和其他重要免责声明的信息。对于生产数据,建议查阅最新的修订版数据表以获取最新信息。
Product
Folder
Order
Now
Technical
Documents
Tools &
Software
Support &
Community
An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications,
intellectual property matters and other important disclaimers. PRODUCTION DATA.
DS90CR485
SNLS143E –FEBRUARY 2003–REVISED SEPTEMBER 2019
DS90CR485 133-MHz, 48-Bit Channel Link Serializer (6.384 Gbps)
1
1 Features
1
• Up to 6.384-Gbps Throughput
• 66-MHz to 133-MHz Input Clock Support
• Reduces Cable and Connector Size and Cost
• Pre-Emphasis Reduces Cable Loading Effects
• DC Balance Reduces ISI Distortion
• 24-Bit Double Edge Inputs
• 3-V Tolerant LVCMOS/LVTTL Inputs
• Low Power, 2.5-V Supply
• Flow-Through Pinout
• 100-Pin TQFP Package
• Conforms With TIA/EIA-644-A LVDS Standard
2 Applications
• Backplane
• Cable Interconnect
3 Description
The DS90CR485 device serializes the 24
LVCMOS/LVTTL double-edge inputs (48 bits data
latched in per clock cycle) onto eight Low Voltage
Differential Signaling (LVDS) streams. A phase-
locked transmit clock is also in parallel with the data
streams over a 9th LVDS link. The reduction of the
wide TTL bus to a few LVDS lines reduces cable and
connector size and cost. The double-edge input
strobes data on both the rising and falling edges of
the clock. This minimizes the pin count required and
simplifies PCB routing between the host chip and the
serializer.
This chip can help resolve EMI and interconnect size
problems for high throughput point-to-point
applications.
The DS90CR485 is compatible with the DS90CR486
Channel-Link receiver. The device is also backward-
compatible with other Channel-Link receivers such as
the DS90CR482 and DS90CR484.
Device Information
(1)
PART NUMBER PACKAGE BODY SIZE (NOM)
DS90CR485 TQFP (100) 14.00 mm × 14.00 mm
(1) For all available packages, see the orderable addendum at
the end of the data sheet.
Generalized Block Diagram
2
DS90CR485
SNLS143E –FEBRUARY 2003–REVISED SEPTEMBER 2019
www.ti.com
Product Folder Links: DS90CR485
Submit Documentation Feedback Copyright © 2003–2019, Texas Instruments Incorporated
Table of Contents
1 Features.................................................................. 1
2 Applications ........................................................... 1
3 Description ............................................................. 1
4 Revision History..................................................... 2
5 Pin Configuration and Functions......................... 3
6 Specifications......................................................... 7
6.1 Absolute Maximum Ratings ...................................... 7
6.2 ESD Ratings.............................................................. 7
6.3 Recommended Operating Conditions....................... 7
6.4 Thermal Information.................................................. 7
6.5 Electrical Characteristics........................................... 8
6.6 Recommended Input Requirements ......................... 8
6.7 Switching Characteristics.......................................... 8
6.8 AC Timing Diagrams................................................. 9
6.9 LVDS Interface........................................................ 12
7 Detailed Description............................................ 15
7.1 Overview ................................................................. 15
7.2 Functional Block Diagram ....................................... 15
7.3 Feature Description................................................. 16
7.4 Device Functional Modes........................................ 18
8 Application and Implementation ........................ 20
8.1 Application Information............................................ 20
8.2 Typical Application .................................................. 20
9 Power Supply Recommendations...................... 22
9.1 Supply Bypass Recommendations ......................... 22
10 Layout................................................................... 22
10.1 Layout Guidelines ................................................. 22
10.2 Layout Example .................................................... 23
11 Device and Documentation Support ................. 24
11.1 Receiving Notification of Documentation Updates 24
11.2 Community Resources.......................................... 24
11.3 Trademarks........................................................... 24
11.4 Electrostatic Discharge Caution............................ 24
11.5 Glossary................................................................ 24
12 Mechanical, Packaging, and Orderable
Information ........................................................... 24
4 Revision History
NOTE: Page numbers for previous revisions may differ from page numbers in the current version.
Changes from Revision D (March 2013) to Revision E Page
• Added Applications section, Device Information table, Pin Configuration and Functions section, Thermal Information
table, Feature Description section, Device Functional Modes, Application and Implementation section, Power Supply
Recommendations section, Layout section, Device and Documentation Support section, and Mechanical,
Packaging, and Orderable Information section. ..................................................................................................................... 1
• Changed pinout and Pin Functions table .............................................................................................................................. 3
• Moved ESD ratings to ESD Ratings table.............................................................................................................................. 7
Changes from Revision C (March 2013) to Revision D Page
• Changed layout of National Data Sheet to TI format ............................................................................................................. 1
3
DS90CR485
www.ti.com
SNLS143E –FEBRUARY 2003–REVISED SEPTEMBER 2019
Product Folder Links: DS90CR485
Submit Documentation FeedbackCopyright © 2003–2019, Texas Instruments Incorporated
5 Pin Configuration and Functions
NEZ Package
100-Pin TQFP
Top View
Pin Functions
PIN
I/O DESCRIPTION
NAME NO.
BAL 24 I
LVCMOS/LVTTL level single-ended inputs. TTL level input. Tied this pin to Vcc to enable DC
Balance function. When tied low or left open, the DC Balance function is disabled. Refer to the
Application and Implementation on the back for more information. See Figure 9 and Figure 10.
3 V tolerant when V
CC3V
= 3.3 V.
4
DS90CR485
SNLS143E –FEBRUARY 2003–REVISED SEPTEMBER 2019
www.ti.com
Product Folder Links: DS90CR485
Submit Documentation Feedback Copyright © 2003–2019, Texas Instruments Incorporated
Pin Functions (continued)
PIN
I/O DESCRIPTION
NAME NO.
CLK1P 41 O Positive LVDS differential clock output.
CLK1M 42 O Negative LVDS differential clock output.
CLKIN 87 I
LVCMOS/LVTTL level clock input. Samples data on both edges. See Figure 5 and Figure 9.
3 V tolerant when V
CC3V
= 3.3 V.
CON1 18 I Control pin. This pin is reserved for future use. Tied to Low or NC.
CON2 19 I
Control pin. This pin must be tied High or pulled to high for normal operation Tied to Low
for internal BIST function only. Do not float.
3V tolerant when V
CC3V
= 3.3 V.
CON3 20 I
Control pin. This pin must be tied Low to configure the device for specific operation. Tied
to High or floating is reserved for future use.
CON4 23 I
Control pin. When tied High, all eight LVDS output channels (A0-A7) are enabled. Tied to Low
will disable LVDS output channels A4-A7. Must tie High for standard operation.
3 V tolerant when V
CC3V
= 3.3 V.
CON5 57 I Control pins. Tied to Low for normal operation.
CON6 58 I Control pins. Tied to Low for normal operation.
CON7 74 I Control pins. Tied to Low for normal operation.
CON8 75 I Control pins. Tied to Low for normal operation.
D0 8 I
LVCMOS/LVTTL level single-ended inputs. 3 V tolerant when V
CC3V
= 3.3 V.
Note, external pulldown resistor of 1 kΩ is required on all unused input data pins.
D1 7 I
LVCMOS/LVTTL level single-ended inputs. 3 V tolerant when V
CC3V
= 3.3 V.
Note, external pulldown resistor of 1 kΩ is required on all unused input data pins.
D2 6 I
LVCMOS/LVTTL level single-ended inputs. 3 V tolerant when V
CC3V
= 3.3 V.
Note, external pulldown resistor of 1 kΩ is required on all unused input data pins.
D3 5 I
LVCMOS/LVTTL level single-ended inputs. 3 V tolerant when V
CC3V
= 3.3 V.
Note, external pulldown resistor of 1 kΩ is required on all unused input data pins.
D4 4 I
LVCMOS/LVTTL level single-ended inputs. 3 V tolerant when V
CC3V
= 3.3 V.
Note, external pulldown resistor of 1 kΩ is required on all unused input data pins.
D5 3 I
LVCMOS/LVTTL level single-ended inputs. 3 V tolerant when V
CC3V
= 3.3 V.
Note, external pulldown resistor of 1 kΩ is required on all unused input data pins.
D6 2 I
LVCMOS/LVTTL level single-ended inputs. 3 V tolerant when V
CC3V
= 3.3 V.
Note, external pulldown resistor of 1 kΩ is required on all unused input data pins.
D7 1 I
LVCMOS/LVTTL level single-ended inputs. 3 V tolerant when V
CC3V
= 3.3 V.
Note, external pulldown resistor of 1 kΩ is required on all unused input data pins.
D8 100 I
LVCMOS/LVTTL level single-ended inputs. 3 V tolerant when V
CC3V
= 3.3 V.
Note, external pulldown resistor of 1 kΩ is required on all unused input data pins.
D9 99 I
LVCMOS/LVTTL level single-ended inputs. 3 V tolerant when V
CC3V
= 3.3 V.
Note, external pulldown resistor of 1 kΩ is required on all unused input data pins.
D10 98 I
LVCMOS/LVTTL level single-ended inputs. 3 V tolerant when V
CC3V
= 3.3 V.
Note, external pulldown resistor of 1 kΩ is required on all unused input data pins.
D11 97 I
LVCMOS/LVTTL level single-ended inputs. 3 V tolerant when V
CC3V
= 3.3 V.
Note, external pulldown resistor of 1 kΩ is required on all unused input data pins.
D12 94 I
LVCMOS/LVTTL level single-ended inputs. 3 V tolerant when V
CC3V
= 3.3 V.
Note, external pulldown resistor of 1 kΩ is required on all unused input data pins.
D13 93 I
LVCMOS/LVTTL level single-ended inputs. 3 V tolerant when V
CC3V
= 3.3 V.
Note, external pulldown resistor of 1 kΩ is required on all unused input data pins.
D14 92 I
LVCMOS/LVTTL level single-ended inputs. 3 V tolerant when V
CC3V
= 3.3 V.
Note, external pulldown resistor of 1 kΩ is required on all unused input data pins.
D15 91 I
LVCMOS/LVTTL level single-ended inputs. 3V tolerant when V
CC3V
= 3.3 V.
Note, external pulldown resistor of 1 kΩ is required on all unused input data pins.
D16 90 I
LVCMOS/LVTTL level single-ended inputs. 3 V tolerant when V
CC3V
= 3.3 V.
Note, external pulldown resistor of 1 kΩ is required on all unused input data pins.
D17 89 I
LVCMOS/LVTTL level single-ended inputs. 3 V tolerant when V
CC3V
= 3.3 V.
Note, external pulldown resistor of 1 kΩ is required on all unused input data pins.
5
DS90CR485
www.ti.com
SNLS143E –FEBRUARY 2003–REVISED SEPTEMBER 2019
Product Folder Links: DS90CR485
Submit Documentation FeedbackCopyright © 2003–2019, Texas Instruments Incorporated
Pin Functions (continued)
PIN
I/O DESCRIPTION
NAME NO.
D18 86 I
LVCMOS/LVTTL level single-ended inputs. 3 V tolerant when V
CC3V
= 3.3 V.
Note, external pulldown resistor of 1 kΩ is required on all unused input data pins.
D19 85 I
LVCMOS/LVTTL level single-ended inputs. 3 V tolerant when V
CC3V
= 3.3 V.
Note, external pulldown resistor of 1 kΩ is required on all unused input data pins.
D20 84 I
LVCMOS/LVTTL level single-ended inputs. 3 V tolerant when V
CC3V
= 3.3 V.
Note, external pulldown resistor of 1 kΩ is required on all unused input data pins.
D21 83 I
LVCMOS/LVTTL level single-ended inputs. 3 V tolerant when V
CC3V
= 3.3 V.
Note, external pulldown resistor of 1 kΩ is required on all unused input data pins.
D22 82 I
LVCMOS/LVTTL level single-ended inputs. 3 V tolerant when V
CC3V
= 3.3 V.
Note, external pulldown resistor of 1 kΩ is required on all unused input data pins.
D23 81 I
LVCMOS/LVTTL level single-ended inputs. 3 V tolerant when V
CC3V
= 3.3 V.
Note, external pulldown resistor of 1 kΩ is required on all unused input data pins.
DS_OPT 76 I
LVCMOS/LVTTL level single-ended inputs. Cable Deskew performed when TTL level input is
low. No TxIN data is sampled during Deskew. To perform Deskew function, input must be held
low for a minimum of 4096 clock cycles. The Deskew operation is normally conducted after the
TX and RX PLLs have locked. It should also be conducted after a system reset, or a
reconfiguration event. Refer to the Application and Implementation section in back of this
datasheet for more information.
3 V tolerant when V
CC3V
= 3.3 V.
GND
9
G Ground pins for 2.5-V power supply.
11
69
71
96
GND
3V
80 G Ground pin for 3.3-V power supply.
LVDSGND
25
G Ground pins for LVDS outputs.
35
43
51
52
LVDSV
CC
30
P Power supply pins for LVDS outputs. Connect to 2.5-V power supply.
40
48
53
NC
26
— No connect. Make NO Connection to these pins - leave open.
27
54
59
60
61
62
63
64
65
66
67
78
88
PAT_SEL 56 I
PRBS-23 or PRBS-15 mode selection pin. PRBS-23 mode is enabled when this pin is tied High.
Tie Low or float to enable PRBS-15 mode.
3 V tolerant when V
CC3V
= 3.3 V.
剩余26页未读,继续阅读
资源推荐
资源评论
5星 · 资源好评率100%
113 浏览量
2023-02-08 上传
2023-02-08 上传
152 浏览量
184 浏览量
200 浏览量
2022-12-16 上传
156 浏览量
142 浏览量
175 浏览量
164 浏览量
2024-03-14 上传
130 浏览量
2022-03-08 上传
124 浏览量
127 浏览量
5星 · 资源好评率100%
138 浏览量
5星 · 资源好评率100%
152 浏览量
5星 · 资源好评率100%
164 浏览量
182 浏览量
资源评论
- 2301_763960562023-02-15#完美解决问题 #运行顺畅 #内容详尽 #全网独家 #注释完整
不觉明了
- 粉丝: 7423
- 资源: 5764
上传资源 快速赚钱
- 我的内容管理 展开
- 我的资源 快来上传第一个资源
- 我的收益 登录查看自己的收益
- 我的积分 登录查看自己的积分
- 我的C币 登录后查看C币余额
- 我的收藏
- 我的下载
- 下载帮助
最新资源
- 微信社团小程序ssm-微信小程序毕业项目,适合计算机毕-设、实训项目、大作业学习.rar
- 校园综合服务小程序+ssm-微信小程序毕业项目,适合计算机毕-设、实训项目、大作业学习.rar
- 微信平台签到系统的设计与实现springboot-微信小程序毕业项目,适合计算机毕-设、实训项目、大作业学习.rar
- 微信小程序的高校党费收缴系统ssm-微信小程序毕业项目,适合计算机毕-设、实训项目、大作业学习.rar
- 学生活动管理系统+ssm-微信小程序毕业项目,适合计算机毕-设、实训项目、大作业学习.rar
- 新闻资讯微信小程序开发后端+php-微信小程序毕业项目,适合计算机毕-设、实训项目、大作业学习.rar
- 自动驾驶控制器,基于分布式驱动电动汽车的四轮侧偏刚度估计,采用容积卡尔曼(ckf)进行估计,能够很好地估计汽车行驶过程中的侧偏刚度,并与转化的侧向轮胎力进行比较,具有很好的估计效果 模型中第一个模块
- 新闻资讯系统设计+springboot-微信小程序毕业项目,适合计算机毕-设、实训项目、大作业学习.rar
- 数据结构PTA理论题答案.zip
- 微信小程序的驾校预约管理系统--论文-微信小程序毕业项目,适合计算机毕-设、实训项目、大作业学习.zip
- 微信小程序的英语学习激励系统--论文-微信小程序毕业项目,适合计算机毕-设、实训项目、大作业学习.zip
- 微信小程序基于BS模式的学生实习与就业管理系统设计与实现springboot-微信小程序毕业项目,适合计算机毕-设、实训项目、大作业学习.rar
- 学生知识成果展示与交流+ssm-微信小程序毕业项目,适合计算机毕-设、实训项目、大作业学习.rar
- 学习自律养成小程序+ssm-微信小程序毕业项目,适合计算机毕-设、实训项目、大作业学习.rar
- 医院挂号系统设计与实现+ssm-微信小程序毕业项目,适合计算机毕-设、实训项目、大作业学习.rar
- 微信小程序评分小程序ssm-微信小程序毕业项目,适合计算机毕-设、实训项目、大作业学习.rar
安全验证
文档复制为VIP权益,开通VIP直接复制
信息提交成功