function h=tftb_window(N,name,param,param2);
%tftb_window Window generation.
% H=tftb_window(N,NAME,PARAM,PARAM2)
% yields a window of length N with a given shape.
%
% N : length of the window
% NAME : name of the window shape (default : Hamming)
% PARAM : optional parameter
% PARAM2 : second optional parameters
%
% Possible names are :
% 'Hamming', 'Hanning', 'Nuttall', 'Papoulis', 'Harris',
% 'Rect', 'Triang', 'Bartlett', 'BartHann', 'Blackman'
% 'Gauss', 'Parzen', 'Kaiser', 'Dolph', 'Hanna'.
% 'Nutbess', 'spline', 'Flattop'
%
% For the gaussian window, an optionnal parameter K
% sets the value at both extremities. The default value is 0.005
%
% For the Kaiser-Bessel window, an optionnal parameter
% sets the scale. The default value is 3*pi.
%
% For the Spline windows, h=tftb_window(N,'spline',nfreq,p)
% yields a spline weighting function of order p and frequency
% bandwidth proportional to nfreq.
%
% Example:
% h=tftb_window(256,'Gauss',0.005);
% plot(0:255, h); axis([0,255,-0.1,1.1]); grid
%
% See also DWINDOW.
% F. Auger, June 1994 - November 1995.
% Copyright (c) 1996 by CNRS (France).
%
% This program is free software; you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation; either version 2 of the License, or
% (at your option) any later version.
%
% This program is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with this program; if not, write to the Free Software
% Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
%
% References :
% - F.J. Harris, "On the use of windows for harmonic
% analysis with the discrete Fourier transform",
% Proceedings of the IEEE, Vol 66, No 1, pp 51-83, 1978.
% - A.H. Nuttal, "A two-parameter class of Bessel weighting
% functions for spectral analysis or array processing",
% IEEE Trans on ASSP, Vol 31, pp 1309-1311, Oct 1983.
% - Y. Ho Ha, J.A. Pearce, "A New window and comparison to
% standard windows", Trans IEEE ASSP, Vol 37, No 2,
% pp 298-300, February 1989.
% - C.S. Burrus, Multiband Least Squares FIR Filter Design,
% Trans IEEE SP, Vol 43, No 2, pp 412-421, February 1995.
if (nargin==0), error ( 'at least 1 parameter is required' ); end;
if (N<=0), error('N should be strictly positive.'); end;
if (nargin==1), name= 'Hamming'; end ;
name=upper(name);
if strcmp(name,'RECTANG') | strcmp(name,'RECT'),
h=ones(N,1);
elseif strcmp(name,'HAMMING'),
h=0.54 - 0.46*cos(2.0*pi*(1:N)'/(N+1));
elseif strcmp(name,'HANNING') | strcmp(name,'HANN'),
h=0.50 - 0.50*cos(2.0*pi*(1:N)'/(N+1));
elseif strcmp(name,'KAISER'),
if (nargin==3), beta=param; else beta=3.0*pi; end;
ind=(-(N-1)/2:(N-1)/2)' *2/N; beta=3.0*pi;
h=besselj(0,j*beta*sqrt(1.0-ind.^2))/real(besselj(0,j*beta));
elseif strcmp(name,'NUTTALL'),
ind=(-(N-1)/2:(N-1)/2)' *2.0*pi/N;
h=+0.3635819 ...
+0.4891775*cos( ind) ...
+0.1363995*cos(2.0*ind) ...
+0.0106411*cos(3.0*ind) ;
elseif strcmp(name,'BLACKMAN'),
ind=(-(N-1)/2:(N-1)/2)' *2.0*pi/N;
h= +0.42 + 0.50*cos(ind) + 0.08*cos(2.0*ind) ;
elseif strcmp(name,'HARRIS'),
ind=(1:N)' *2.0*pi/(N+1);
h=+0.35875 ...
-0.48829 *cos( ind) ...
+0.14128 *cos(2.0*ind) ...
-0.01168 *cos(3.0*ind);
elseif strcmp(name,'BARTLETT') | strcmp(name,'TRIANG'),
h=2.0*min((1:N),(N:-1:1))'/(N+1);
elseif strcmp(name,'BARTHANN'),
h= 0.38 * (1.0-cos(2.0*pi*(1:N)/(N+1))') ...
+ 0.48 * min((1:N),(N:-1:1))'/(N+1);
elseif strcmp(name,'PAPOULIS'),
ind=(1:N)'*pi/(N+1); h=sin(ind);
elseif strcmp(name,'GAUSS'),
if (nargin==3), K=param; else K=0.005; end;
h= exp(log(K) * linspace(-1,1,N)'.^2 );
elseif strcmp(name,'PARZEN'),
ind=abs(-(N-1)/2:(N-1)/2)'*2/N; temp=2*(1.0-ind).^3;
h= min(temp-(1-2.0*ind).^3,temp);
elseif strcmp(name,'HANNA'),
if (nargin==3), L=param; else L=1; end;
ind=(0:N-1)';h=sin((2*ind+1)*pi/(2*N)).^(2*L);
elseif strcmp(name,'DOLPH') | strcmp(name,'DOLF'),
if (rem(N,2)==0), oddN=1; N=2*N+1; else oddN=0; end;
if (nargin==3), A=10^(param/20); else A=1e-3; end;
K=N-1; Z0=cosh(acosh(1.0/A)/K); x0=acos(1/Z0)/pi; x=(0:K)/N;
indices1=find((x<x0)|(x>1-x0));
indices2=find((x>=x0)&(x<=1-x0));
h(indices1)= cosh(K*acosh(Z0*cos(pi*x(indices1))));
h(indices2)= cos(K*acos(Z0*cos(pi*x(indices2))));
h=fftshift(real(ifft(A*real(h))));h=h'/h(K/2+1);
if oddN, h=h(2:2:K); end;
elseif strcmp(name,'NUTBESS'),
if (nargin==3), beta=param; nu=0.5;
elseif (nargin==4), beta=param; nu=param2;
else beta=3*pi; nu=0.5;
end;
ind=(-(N-1)/2:(N-1)/2)' *2/N;
h=sqrt(1-ind.^2).^nu .* ...
real(besselj(nu,j*beta*sqrt(1.0-ind.^2)))/real(besselj(nu,j*beta));
elseif strcmp(name,'SPLINE'),
if (nargin < 3),
error('Three or four parameters required for spline windows');
elseif (nargin==3),
nfreq=param; p=pi*N*nfreq/10.0;
else nfreq=param; p=param2;
end;
ind=(-(N-1)/2:(N-1)/2)';
h=sinc((0.5*nfreq/p)*ind) .^ p;
elseif strcmp(name,'FLATTOP'),
ind=(-(N-1)/2:(N-1)/2)' *2.0*pi/(N-1);
h=+0.2810639 ...
+0.5208972*cos( ind) ...
+0.1980399*cos(2.0*ind) ;
else error('unknown window name');
end;
评论0