# TensorFlow Examples
This tutorial was designed for easily diving into TensorFlow, through examples. For readability, it includes both notebooks and source codes with explanation.
It is suitable for beginners who want to find clear and concise examples about TensorFlow. Besides the traditional 'raw' TensorFlow implementations, you can also find the latest TensorFlow API practices (such as `layers`, `estimator`, `dataset`, ...).
**Update (27.08.17):** TensorFlow v1.3 is recommended. Added many new examples (kmeans, random forest, multi-gpu training, layers api, estimator api, dataset api ...).
*If you are using older TensorFlow version (0.11 and under), please have a [look here](https://github.com/aymericdamien/TensorFlow-Examples/tree/0.11).*
## Tutorial index
#### 0 - Prerequisite
- [Introduction to Machine Learning](https://github.com/aymericdamien/TensorFlow-Examples/blob/master/notebooks/0_Prerequisite/ml_introduction.ipynb).
- [Introduction to MNIST Dataset](https://github.com/aymericdamien/TensorFlow-Examples/blob/master/notebooks/0_Prerequisite/mnist_dataset_intro.ipynb).
#### 1 - Introduction
- **Hello World** ([notebook](https://github.com/aymericdamien/TensorFlow-Examples/blob/master/notebooks/1_Introduction/helloworld.ipynb)) ([code](https://github.com/aymericdamien/TensorFlow-Examples/blob/master/examples/1_Introduction/helloworld.py)). Very simple example to learn how to print "hello world" using TensorFlow.
- **Basic Operations** ([notebook](https://github.com/aymericdamien/TensorFlow-Examples/blob/master/notebooks/1_Introduction/basic_operations.ipynb)) ([code](https://github.com/aymericdamien/TensorFlow-Examples/blob/master/examples/1_Introduction/basic_operations.py)). A simple example that cover TensorFlow basic operations.
#### 2 - Basic Models
- **Linear Regression** ([notebook](https://github.com/aymericdamien/TensorFlow-Examples/blob/master/notebooks/2_BasicModels/linear_regression.ipynb)) ([code](https://github.com/aymericdamien/TensorFlow-Examples/blob/master/examples/2_BasicModels/linear_regression.py)). Implement a Linear Regression with TensorFlow.
- **Logistic Regression** ([notebook](https://github.com/aymericdamien/TensorFlow-Examples/blob/master/notebooks/2_BasicModels/logistic_regression.ipynb)) ([code](https://github.com/aymericdamien/TensorFlow-Examples/blob/master/examples/2_BasicModels/logistic_regression.py)). Implement a Logistic Regression with TensorFlow.
- **Nearest Neighbor** ([notebook](https://github.com/aymericdamien/TensorFlow-Examples/blob/master/notebooks/2_BasicModels/nearest_neighbor.ipynb)) ([code](https://github.com/aymericdamien/TensorFlow-Examples/blob/master/examples/2_BasicModels/nearest_neighbor.py)). Implement Nearest Neighbor algorithm with TensorFlow.
- **K-Means** ([notebook](https://github.com/aymericdamien/TensorFlow-Examples/blob/master/notebooks/2_BasicModels/kmeans.ipynb)) ([code](https://github.com/aymericdamien/TensorFlow-Examples/blob/master/examples/2_BasicModels/kmeans.py)). Build a K-Means classifier with TensorFlow.
- **Random Forest** ([notebook](https://github.com/aymericdamien/TensorFlow-Examples/blob/master/notebooks/2_BasicModels/random_forest.ipynb)) ([code](https://github.com/aymericdamien/TensorFlow-Examples/blob/master/examples/2_BasicModels/random_forest.py)). Build a Random Forest classifier with TensorFlow.
#### 3 - Neural Networks
##### Supervised
- **Simple Neural Network** ([notebook](https://github.com/aymericdamien/TensorFlow-Examples/blob/master/notebooks/3_NeuralNetworks/neural_network_raw.ipynb)) ([code](https://github.com/aymericdamien/TensorFlow-Examples/blob/master/examples/3_NeuralNetworks/neural_network_raw.py)). Build a simple neural network (a.k.a Multi-layer Perceptron) to classify MNIST digits dataset. Raw TensorFlow implementation.
- **Simple Neural Network (tf.layers/estimator api)** ([notebook](https://github.com/aymericdamien/TensorFlow-Examples/blob/master/notebooks/3_NeuralNetworks/neural_network.ipynb)) ([code](https://github.com/aymericdamien/TensorFlow-Examples/blob/master/examples/3_NeuralNetworks/neural_network.py)). Use TensorFlow 'layers' and 'estimator' API to build a simple neural network (a.k.a Multi-layer Perceptron) to classify MNIST digits dataset.
- **Convolutional Neural Network** ([notebook](https://github.com/aymericdamien/TensorFlow-Examples/blob/master/notebooks/3_NeuralNetworks/convolutional_network_raw.ipynb)) ([code](https://github.com/aymericdamien/TensorFlow-Examples/blob/master/examples/3_NeuralNetworks/convolutional_network_raw.py)). Build a convolutional neural network to classify MNIST digits dataset. Raw TensorFlow implementation.
- **Convolutional Neural Network (tf.layers/estimator api)** ([notebook](https://github.com/aymericdamien/TensorFlow-Examples/blob/master/notebooks/3_NeuralNetworks/convolutional_network.ipynb)) ([code](https://github.com/aymericdamien/TensorFlow-Examples/blob/master/examples/3_NeuralNetworks/convolutional_network.py)). Use TensorFlow 'layers' and 'estimator' API to build a convolutional neural network to classify MNIST digits dataset.
- **Recurrent Neural Network (LSTM)** ([notebook](https://github.com/aymericdamien/TensorFlow-Examples/blob/master/notebooks/3_NeuralNetworks/recurrent_network.ipynb)) ([code](https://github.com/aymericdamien/TensorFlow-Examples/blob/master/examples/3_NeuralNetworks/recurrent_network.py)). Build a recurrent neural network (LSTM) to classify MNIST digits dataset.
- **Bi-directional Recurrent Neural Network (LSTM)** ([notebook](https://github.com/aymericdamien/TensorFlow-Examples/blob/master/notebooks/3_NeuralNetworks/bidirectional_rnn.ipynb)) ([code](https://github.com/aymericdamien/TensorFlow-Examples/blob/master/examples/3_NeuralNetworks/bidirectional_rnn.py)). Build a bi-directional recurrent neural network (LSTM) to classify MNIST digits dataset.
- **Dynamic Recurrent Neural Network (LSTM)** ([notebook](https://github.com/aymericdamien/TensorFlow-Examples/blob/master/notebooks/3_NeuralNetworks/dynamic_rnn.ipynb)) ([code](https://github.com/aymericdamien/TensorFlow-Examples/blob/master/examples/3_NeuralNetworks/dynamic_rnn.py)). Build a recurrent neural network (LSTM) that performs dynamic calculation to classify sequences of different length.
##### Unsupervised
- **Auto-Encoder** ([notebook](https://github.com/aymericdamien/TensorFlow-Examples/blob/master/notebooks/3_NeuralNetworks/autoencoder.ipynb)) ([code](https://github.com/aymericdamien/TensorFlow-Examples/blob/master/examples/3_NeuralNetworks/autoencoder.py)). Build an auto-encoder to encode an image to a lower dimension and re-construct it.
- **Variational Auto-Encoder** ([notebook](https://github.com/aymericdamien/TensorFlow-Examples/blob/master/notebooks/3_NeuralNetworks/variational_autoencoder.ipynb)) ([code](https://github.com/aymericdamien/TensorFlow-Examples/blob/master/examples/3_NeuralNetworks/variational_autoencoder.py)). Build a variational auto-encoder (VAE), to encode and generate images from noise.
- **GAN (Generative Adversarial Networks)** ([notebook](https://github.com/aymericdamien/TensorFlow-Examples/blob/master/notebooks/3_NeuralNetworks/gan.ipynb)) ([code](https://github.com/aymericdamien/TensorFlow-Examples/blob/master/examples/3_NeuralNetworks/gan.py)). Build a Generative Adversarial Network (GAN) to generate images from noise.
- **DCGAN (Deep Convolutional Generative Adversarial Networks)** ([notebook](https://github.com/aymericdamien/TensorFlow-Examples/blob/master/notebooks/3_NeuralNetworks/dcgan.ipynb)) ([code](https://github.com/aymericdamien/TensorFlow-Examples/blob/master/examples/3_NeuralNetworks/dcgan.py)). Build a Deep Convolutional Generative Adversarial Network (DCGAN) to generate images from noise.
#### 4 - Utilities
- **Save and Restore a model** ([notebook](https://github.com/aymericdamien/TensorFlow-Examples/blob/master/notebooks/4_Utils/save_restore_model.ipynb)) ([code](https://github.com/aymericdamien/TensorFlow-Examples/blob/master/examples/4_
没有合适的资源?快使用搜索试试~ 我知道了~
TensorFlow-Examples-master.zip_Sample master_tensorflow_tensorfl
共63个文件
py:27个
ipynb:27个
png:6个
1.该资源内容由用户上传,如若侵权请联系客服进行举报
2.虚拟产品一经售出概不退款(资源遇到问题,请及时私信上传者)
2.虚拟产品一经售出概不退款(资源遇到问题,请及时私信上传者)
版权申诉
0 下载量 96 浏览量
2022-09-21
21:14:57
上传
评论
收藏 2.76MB ZIP 举报
温馨提示
非常精彩的TensorFlow的例子,可操作性强
资源详情
资源评论
资源推荐
收起资源包目录
TensorFlow-Examples-master.zip (63个子文件)
TensorFlow-Examples-master
input_data.py 6KB
resources
img
tensorboard_basic_1.png 278KB
tensorboard_advanced_4.png 593KB
tensorboard_advanced_2.png 322KB
tensorboard_advanced_3.png 987KB
tensorboard_advanced_1.png 280KB
tensorboard_basic_2.png 341KB
LICENSE 1KB
examples
6_MultiGPU
multigpu_cnn.py 7KB
multigpu_basics.py 2KB
5_DataManagement
build_an_image_dataset.py 7KB
tensorflow_dataset_api.py 5KB
2_BasicModels
random_forest.py 3KB
logistic_regression.py 2KB
nearest_neighbor.py 2KB
kmeans.py 3KB
linear_regression.py 3KB
3_NeuralNetworks
autoencoder.py 5KB
gan.py 6KB
convolutional_network_raw.py 5KB
dcgan.py 6KB
bidirectional_rnn.py 4KB
neural_network_raw.py 3KB
dynamic_rnn.py 7KB
recurrent_network.py 4KB
neural_network.py 3KB
convolutional_network.py 5KB
variational_autoencoder.py 5KB
multilayer_perceptron.py 3KB
4_Utils
tensorboard_advanced.py 5KB
save_restore_model.py 5KB
tensorboard_basic.py 3KB
1_Introduction
basic_operations.py 2KB
helloworld.py 522B
.gitignore 118B
README.md 12KB
notebooks
6_MultiGPU
multigpu_cnn.ipynb 13KB
multigpu_basics.ipynb 4KB
5_DataManagement
build_an_image_dataset.ipynb 10KB
tensorflow_dataset_api.ipynb 9KB
2_BasicModels
random_forest.ipynb 7KB
linear_regression.ipynb 61KB
kmeans.ipynb 6KB
nearest_neighbor.ipynb 13KB
logistic_regression.ipynb 5KB
3_NeuralNetworks
variational_autoencoder.ipynb 292KB
convolutional_network_raw.ipynb 12KB
bidirectional_rnn.ipynb 12KB
dcgan.ipynb 49KB
neural_network_raw.ipynb 7KB
recurrent_network.ipynb 11KB
neural_network.ipynb 30KB
dynamic_rnn.ipynb 15KB
autoencoder.ipynb 46KB
gan.ipynb 46KB
convolutional_network.ipynb 32KB
4_Utils
save_restore_model.ipynb 8KB
tensorboard_basic.ipynb 7KB
tensorboard_advanced.ipynb 10KB
0_Prerequisite
ml_introduction.ipynb 2KB
mnist_dataset_intro.ipynb 3KB
1_Introduction
helloworld.ipynb 2KB
basic_operations.ipynb 5KB
共 63 条
- 1
刘良运
- 粉丝: 77
- 资源: 1万+
上传资源 快速赚钱
- 我的内容管理 展开
- 我的资源 快来上传第一个资源
- 我的收益 登录查看自己的收益
- 我的积分 登录查看自己的积分
- 我的C币 登录后查看C币余额
- 我的收藏
- 我的下载
- 下载帮助
最新资源
- HIVE-14706.01.patch
- C# WInForm IrisSkin2皮肤控件
- svn cleanup 失败怎么办
- Spring Boot集成Spring Security,HTTP请求授权配置:包含匿名访问、允许访问、禁止访问配置
- 易语言-画曲线模块及应用例程
- 电子元件行业知名厂商官网(TI/NXP/ST/Infineon/ADI/Microchip/Qualcomm/Diodes/Panasonic/TDK/TE/Vishay/Molex等)数据样例
- Cytoscape-3-10-0-windows-64bit.exe
- 基于STM32设计的宠物投喂器项目源代码(高分项目).zip
- 机器学习音频训练文件-24年抖音金曲
- 工业以太网无线通信解决方案
资源上传下载、课程学习等过程中有任何疑问或建议,欢迎提出宝贵意见哦~我们会及时处理!
点击此处反馈
安全验证
文档复制为VIP权益,开通VIP直接复制
信息提交成功
评论0